Carrillo, J. A.; Lisini, S.; Mainini, E. Gradient flows for non-smooth interaction potentials. (English) Zbl 1285.49035 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 100, 122-147 (2014). MSC: 49Q20 49J45 49J52 35F99 PDF BibTeX XML Cite \textit{J. A. Carrillo} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 100, 122--147 (2014; Zbl 1285.49035) Full Text: DOI
Zheng, Xi Yin; He, Qing Hai Characterization of metric regularity for \({\sigma}\)-subsmooth multifunctions. (English) Zbl 1284.49019 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 100, 111-121 (2014). MSC: 49J53 49J52 90C29 90C30 PDF BibTeX XML Cite \textit{X. Y. Zheng} and \textit{Q. H. He}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 100, 111--121 (2014; Zbl 1284.49019) Full Text: DOI
Dai, Limei Exterior problems for a parabolic Monge-Ampère equation. (English) Zbl 1288.35325 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 100, 99-110 (2014). MSC: 35K96 35B40 35D40 PDF BibTeX XML Cite \textit{L. Dai}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 100, 99--110 (2014; Zbl 1288.35325) Full Text: DOI
Burton, T. A.; Purnaras, I. K. Corrigendum to: “A unification theory of Krasnoselskii for differential equations”. (English) Zbl 1317.34002 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 100, 97-98 (2014). MSC: 34-02 34A08 34D20 34K40 45J05 47H10 PDF BibTeX XML Cite \textit{T. A. Burton} and \textit{I. K. Purnaras}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 100, 97--98 (2014; Zbl 1317.34002) Full Text: DOI
Ye, Zhuan; Xu, Xiaojing Global regularity of the two-dimensional incompressible generalized magnetohydrodynamics system. (English) Zbl 1288.35406 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 100, 86-96 (2014). Reviewer: Iván Abonyi (Budapest) MSC: 35Q35 35B35 35B65 76D03 76W05 PDF BibTeX XML Cite \textit{Z. Ye} and \textit{X. Xu}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 100, 86--96 (2014; Zbl 1288.35406) Full Text: DOI
Banerjee, Agnid; Lewis, John L. Gradient bounds for \(p\)-harmonic systems with vanishing Neumann (Dirichlet) data in a convex domain. (English) Zbl 1288.35220 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 100, 78-85 (2014). MSC: 35J25 35J70 35D30 PDF BibTeX XML Cite \textit{A. Banerjee} and \textit{J. L. Lewis}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 100, 78--85 (2014; Zbl 1288.35220) Full Text: DOI arXiv
Zhang, Ting Global strong solutions for equations related to the incompressible viscoelastic fluids with a class of large initial data. (English) Zbl 1432.35181 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 100, 59-77 (2014). MSC: 35Q35 35A01 35A02 35D35 76A10 PDF BibTeX XML Cite \textit{T. Zhang}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 100, 59--77 (2014; Zbl 1432.35181) Full Text: DOI
Hashimoto, Itsuko Asymptotic behavior of radially symmetric solutions for the Burgers equation in several space dimensions. (English) Zbl 1295.35090 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 100, 43-58 (2014). MSC: 35B40 35L60 37K40 35B07 PDF BibTeX XML Cite \textit{I. Hashimoto}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 100, 43--58 (2014; Zbl 1295.35090) Full Text: DOI
Frankowska, Hélène; Sedrakyan, Hayk Stable representation of convex Hamiltonians. (English) Zbl 1304.49049 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 100, 30-42 (2014). MSC: 49L99 49L25 PDF BibTeX XML Cite \textit{H. Frankowska} and \textit{H. Sedrakyan}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 100, 30--42 (2014; Zbl 1304.49049) Full Text: DOI
Petean, Jimmy Degenerate solutions of a nonlinear elliptic equation on the sphere. (English) Zbl 1287.35026 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 100, 23-29 (2014). MSC: 35J60 PDF BibTeX XML Cite \textit{J. Petean}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 100, 23--29 (2014; Zbl 1287.35026) Full Text: DOI
Zaslavski, Alexander J. Stability of a turnpike phenomenon for approximate solutions of nonautonomous discrete-time optimal control systems. (English) Zbl 1284.49018 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 100, 1-22 (2014). MSC: 49J45 49K40 93C55 PDF BibTeX XML Cite \textit{A. J. Zaslavski}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 100, 1--22 (2014; Zbl 1284.49018) Full Text: DOI