zbMATH — the first resource for mathematics

Kinetic theory of jet dynamics in the stochastic barotropic and 2D Navier-Stokes equations. (English) Zbl 1292.82031
Summary: We discuss the dynamics of zonal (or unidirectional) jets for barotropic flows forced by Gaussian stochastic fields with white in time correlation functions. This problem contains the stochastic dynamics of 2D Navier-Stokes equation as a special case. We consider the limit of weak forces and dissipation, when there is a time scale separation between the inertial time scale (fast) and the spin-up or spin-down time (large) needed to reach an average energy balance. In this limit, we show that an adiabatic reduction (or stochastic averaging) of the dynamics can be performed. We then obtain a kinetic equation that describes the slow evolution of zonal jets over a very long time scale, where the effect of non-zonal turbulence has been integrated out. The main theoretical difficulty, achieved in this work, is to analyze the stationary distribution of a Lyapunov equation that describes quasi-Gaussian fluctuations around each zonal jet, in the inertial limit. This is necessary to prove that there is no ultraviolet divergence at leading order, in such a way that the asymptotic expansion is self-consistent. We obtain at leading order a Fokker-Planck equation, associated to a stochastic kinetic equation, that describes the slow jet dynamics. Its deterministic part is related to well known phenomenological theories (for instance stochastic structural stability theory) and to quasi-linear approximations, whereas the stochastic part allows to go beyond the computation of the most probable zonal jet. We argue that the effect of the stochastic part may be of huge importance when, as for instance in the proximity of phase transitions, more than one attractor of the dynamics is present.
Reviewer: Reviewer (Berlin)

82C40 Kinetic theory of gases in time-dependent statistical mechanics
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
Full Text: DOI
[1] Bakas, N., Ioannou, P.: A theory for the emergence of coherent structures in beta-plane turbulence (2013). arXiv:1303.6435
[2] Berhanu, M.; Monchaux, R.; Fauve, S.; Mordant, N.; Pétrélis, F.; Chiffaudel, A.; Daviaud, F.; Dubrulle, B.; Marié, L.; Ravelet, F.; Bourgoin, M.; Odier, P.; Pinton, J.-F.; Volk, R., Magnetic field reversals in an experimental turbulent dynamo, Europhys. Lett., 77, 59001, (2007) · Zbl 1183.76009
[3] Binney, J., Tremaine, S.: Galactic Dynamics. Princeton University Press, Princeton (1987). 747 p. · Zbl 1130.85301
[4] Boffetta, G.; Ecke, R.E., Two-dimensional turbulence, Annu. Rev. Fluid Mech., 44, 427-451, (2012) · Zbl 1350.76022
[5] Bouchet, F., Stochastic process of equilibrium fluctuations of a system with long-range interactions, Phys. Rev. E, 70, (2004)
[6] Bouchet, F.; Dauxois, T., Prediction of anomalous diffusion and algebraic relaxations for long-range interacting systems, using classical statistical mechanics, Phys. Rev. E, 72, (2005)
[7] Bouchet, F.; Morita, H., Large time behavior and asymptotic stability of the 2D Euler and linearized Euler equations, Phys D, Nonlinear Phenom., 239, 948-966, (2010) · Zbl 1189.35234
[8] Bouchet, F.; Simonnet, E., Random changes of flow topology in two-dimensional and geophysical turbulence, Phys. Rev. Lett., 102, (2009)
[9] Bouchet, F.; Venaille, A., Statistical mechanics of two-dimensional and geophysical flows, Phys. Rep., 515, 227-295, (2012)
[10] Bouchet, F.; Dauxois, T., Kinetics of anomalous transport and algebraic correlations in a long-range interacting system, J. Phys. Conf. Ser., 7, 34, (2005)
[11] Bréhier, C.-E.: Strong and weak order in averaging for SPDEs. Stoch. Proc. Appl. (2012)
[12] Bricmont, J.; Kupiainen, A.; Lefevere, R., Ergodicity of the 2D Navier-Stokes equations with random forcing, Commun. Math. Phys., 224, 65-81, (2001) · Zbl 0994.60066
[13] Campa, A.; Dauxois, T.; Ruffo, S., Statistical mechanics and dynamics of solvable models with long-range interactions, Phys. Rep., 480, 57-159, (2009)
[14] Case, K.M., Stability of inviscid plane Couette flow, Phys. Fluids, 3, 143-148, (1960) · Zbl 0089.43601
[15] Chavanis, P.H., Quasilinear theory of the 2D Euler equation, Phys. Rev. Lett., 84, 5512-5515, (2000)
[16] Chavanis, P.H., Kinetic theory of point vortices: diffusion coefficient and systematic drift, Phys. Rev. E, 64, (2001)
[17] Chavanis, P.H.; Dauxois, T. (ed.); Ruffo, S. (ed.); Arimondo, E. (ed.); Wilkens, M. (ed.), Statistical mechanics of two-dimensional vortices and stellar systems, No. 602, 208-289, (2002), Berlin
[18] Chertkov, M.; Connaughton, C.; Kolokolov, I.; Lebedev, V., Dynamics of energy condensation in two-dimensional turbulence, Phys. Rev. Lett., 99, (2007)
[19] Constantinou, N.C., Ioannou, P.J., Farrell, B.F.: Emergence and equilibration of jets in beta-plane turbulence (2012). arXiv:1208.5665
[20] Prato, G.; Debussche, A., Ergodicity for the 3d stochastic Navier-Stokes equations, J. Math. Pures Appl., 82, 877-947, (2003) · Zbl 1109.60047
[21] Danilov, S.; Gurarie, D., Scaling, spectra and zonal jets in beta-plane turbulence, Phys. Fluids, 16, 2592, (2004) · Zbl 1186.76124
[22] DelSole, T.; Farrell, B.F., The quasi-linear equilibration of a thermally maintained, stochastically excited jet in a quasigeostrophic model, J. Atmos. Sci., 53, 1781-1797, (1996)
[23] Drazin, P.G., Reid, W.H.: Hydrodynamic Stability, 2nd edn. Cambridge University Press, Cambridge (2004) · Zbl 1055.76001
[24] Dritschel, D.G.; McIntyre, M.E., Multiple jets as PV staircases: the Phillips effect and the resilience of eddy-transport barriers, J. Atmos. Sci., 65, 855, (2008)
[25] Dubin, D.H.E.; O’Neil, T.M., Two-dimensional guiding-center transport of a pure electron plasma, Phys. Rev. Lett., 60, 1286-1289, (1988)
[26] Farrell, B.F.; Ioannou, P.J., Structure and spacing of jets in barotropic turbulence, J. Atmos. Sci., 64, 3652, (2007)
[27] Farrell, B.F.; Ioannou, P.J., Structural stability of turbulent jets, J. Atmos. Sci., 60, 2101-2118, (2003)
[28] Ferrario, B., Ergodic results for stochastic Navier-Stokes equation, Stoch. Int. J. Probab. Stoch. Process., 60, 271-288, (1997) · Zbl 0882.60059
[29] Flandoli, F.; Maslowski, B., Ergodicity of the 2-d Navier-Stokes equation under random perturbations, Commun. Math. Phys., 172, 119-141, (1995) · Zbl 0845.35080
[30] Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems. Springer, New York (1984) · Zbl 0522.60055
[31] Galperin, B.; Sukoriansky, S.; Dikovskaya, N., Geophysical flows with anisotropic turbulence and dispersive waves: flows with a \(β\)-effect, Ocean Dyn., 60, 427-441, (2010)
[32] Galperin, B.; Sukoriansky, S.; Huang, H.-P., Universal n spectrum of zonal flows on giant planets, Phys. Fluids, 13, 1545, (2001) · Zbl 1184.76172
[33] Gardiner, C.W.: Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. Springer Series in Synergetics. Springer, Berlin (1994). 2nd ed. 1985. Corr. 3rd printing 1994 · Zbl 0862.60050
[34] Gourcy, M., A large deviation principle for 2d stochastic Navier-Stokes equation, Stoch. Process. Appl., 117, 904-927, (2007) · Zbl 1117.60027
[35] Hairer, M., Mattingly, J.C.: Ergodicity of the 2d Navier-Stokes equations with degenerate stochastic forcing. Ann. Math. 993-1032 (2006) · Zbl 1130.37038
[36] Hairer, M.; Mattingly, J.C., Spectral gaps in Wasserstein distances and the 2d stochastic Navier-Stokes equations, Ann. Probab., 36, 2050-2091, (2008) · Zbl 1173.37005
[37] Jaksic, V., Nersesyan, V., Pillet, C.-A., Shirikyan, A.: Large deviations from a stationary measure for a class of dissipative PDE’s with random kicks (2012). arXiv:1212.0527 · Zbl 1328.60076
[38] Kasahara, A., Effect of zonal flows on the free oscillations of a barotropic atmosphere, J. Atmos. Sci., 37, 917-929, (1980)
[39] Khasminskii, R.Z., On an averaging principle for ito stochastic differential equations, Kybernetika, 4, 260-279, (1968) · Zbl 0231.60045
[40] Kuksin, S.B., The Eulerian limit for 2D statistical hydrodynamics, J. Stat. Phys., 115, 469-492, (2004) · Zbl 1157.76319
[41] Kuksin, S.; Penrose, O., A family of balance relations for the two-dimensional Navier-Stokes equations with random forcing, J. Stat. Phys., 118, 437-449, (2005) · Zbl 1064.76027
[42] Kuksin, S.; Shirikyan, A., Ergodicity for the randomly forced 2d Navier-Stokes equations, Math. Phys. Anal. Geom., 4, 147-195, (2001) · Zbl 1013.37046
[43] Kuksin, S.B.; Piatnitski, A.L., Khasminskii-Whitham averaging for randomly perturbed KdV equation, J. Math. Pures Appl., 89, 400-428, (2008) · Zbl 1148.35077
[44] Kuksin, S.B., Shirikyan, A.: Mathematics of Two-Dimensional Turbulence. Cambridge University Press, Cambridge (2012) · Zbl 1333.76003
[45] Landau, L.D., Lifshitz, E.M.: Statistical Physics. Course of Theoretical Physics, vol. 5. Pergamon Press, New York (1980) · Zbl 0080.19702
[46] Loxley, P.N.; Nadiga, B.T., Bistability and hysteresis of maximum-entropy states in decaying two-dimensional turbulence, Phys. Fluids, 25, (2013)
[47] Maassen, S.R.; Clercx, H.J.H.; Heijst, G.J.F., Self-organization of decaying quasi-two-dimensional turbulence in stratified fluid in rectangular containers, J. Fluid Mech., 495, 19-33, (2003) · Zbl 1069.76002
[48] Majda, A.J., Wang, X.: Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows. Cambridge University Press, Cambridge (2006) · Zbl 1141.86001
[49] Majda, A.J.; Wang, X., The emergence of large-scale coherent structure under small-scale random bombardments, Commun. Pure Appl. Math., 59, 467-500, (2006) · Zbl 1099.86001
[50] Marston, J.B., Statistics of the general circulation from cumulant expansions, Chaos, 20, (2010)
[51] Marston, B., Looking for new problems to solve? consider the climate, Phys. Online J., 4, 20, (2011)
[52] Marston, J.B.; Conover, E.; Schneider, T., Statistics of an unstable barotropic jet from a cumulant expansion, J. Atmos. Sci., 65, 1955, (2008)
[53] Mattingly, J.C.; Sinai, Y.G., An elementary proof of the existence and uniqueness theorem for the Navier-Stokes equations, Commun. Contemp. Math., 1, 497-516, (1999) · Zbl 0961.35112
[54] Miller, J., Statistical mechanics of Euler equations in two dimensions, Phys. Rev. Lett., 65, 2137-2140, (1990) · Zbl 1050.82553
[55] Mouhot, C.; Villani, C., On Landau damping, Acta Math., 207, 29-201, (2011) · Zbl 1239.82017
[56] Nardini, C.; Gupta, S.; Ruffo, S.; Dauxois, T.; Bouchet, F., Kinetic theory for non-equilibrium stationary states in long-range interacting systems, J. Stat. Mech. Theory Exp., 1, (2012)
[57] Nardini, C.; Gupta, S.; Ruffo, S.; Dauxois, T.; Bouchet, F., Kinetic theory of nonequilibrium stochastic long-range systems: phase transition and bistability, J. Stat. Mech. Theory Exp., 2012, (2012)
[58] Nazarenko, S., On exact solutions for near-wall turbulence theory, Phys. Lett. A, 264, 444-448, (2000) · Zbl 0966.76035
[59] Nazarenko, S.; Kevlahan, N.K.-R.; Dubrulle, B., WKB theory for rapid distortion of inhomogeneous turbulence, J. Fluid Mech., 390, 325-348, (1999) · Zbl 0967.76045
[60] Nazarenko, S.; Kevlahan, N.K.-R.; Dubrulle, B., Nonlinear RDT theory of near-wall turbulence, Phys D, Nonlinear Phenom., 139, 158-176, (2000) · Zbl 0965.76032
[61] Nicholson, D.: Introduction to Plasma Theory. Wiley, New York (1983)
[62] O’Gorman, P.A., Schneider, T.: Recovery of atmospheric flow statistics in a general circulation model without nonlinear eddy-eddy interactions. Geophys. Res. Lett. 34(22) (2007) · Zbl 1117.60027
[63] Parker, J.B., Krommes, J.A.: Zonal flow as pattern formation: Merging jets and the ultimate jet length scale (2013). arXiv:1301.5059
[64] Pedlosky, J.: Geophysical Fluid Dynamics (1982) · Zbl 0429.76001
[65] Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000) · Zbl 0966.76002
[66] Ravelet, F.; Marié, L.; Chiffaudel, A.; Daviaud, F., Multistability and memory effect in a highly turbulent flow: experimental evidence for a global bifurcation, Phys. Rev. Lett., 93, (2004)
[67] Robert, R.: Etats d’équilibre statistique pour l’écoulement bidimensionnel d’un fluide parfait. C. R. Acad. Sci., Ser. 1 Math. 311, 575-578 (1990) · Zbl 0707.76002
[68] Robert, R., A maximum-entropy principle for two-dimensional perfect fluid dynamics, J. Stat. Phys., 65, 531-553, (1991) · Zbl 0935.76530
[69] Schmeits, M.J.; Dijkstra, H.A., Bimodal behavior of the kuroshio and the gulf stream, J. Phys. Oceanogr., 31, 3435-3456, (2001)
[70] Shirikyan, A., Exponential mixing for 2d Navier-Stokes equations perturbed by an unbounded noise, J. Math. Fluid Mech., 6, 169-193, (2004) · Zbl 1095.35032
[71] Sommeria, J., Experimental study of the two-dimensional inverse energy cascade in a square box, J. Fluid Mech., 170, 139-168, (1986)
[72] Srinivasan, K.; Young, W.R., Zonostrophic instability, J. Atmos. Sci., 69, 1633-1656, (2011)
[73] Sritharana, S.S.; Sundarb, P., Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise, Stoch. Process. Appl., 116, 1636-1659, (2006) · Zbl 1117.60064
[74] Tobias, S.M.; Marston, J.B., Direct statistical simulation of out-of-equilibrium jets, Phys. Rev. Lett., 110, (2013)
[75] Vallis, G.K.: Atmospheric and Oceanic Fluid Dynamics (2006) · Zbl 1374.86002
[76] Weeks, E.R.; Tian, Y.; Urbach, J.S.; Ide, K.; Swinney, H.L.; Ghil, M., Transitions between blocked and zonal flows in a rotating annulus, Science, 278, 1598, (1997)
[77] Weinan, E.; Mattingly, J.C., Ergodicity for the Navier-Stokes equation with degenerate random forcing: finite-dimensional approximation, Commun. Pure Appl. Math., 54, 1386-1402, (2001) · Zbl 1024.76012
[78] Yamaguchi, Y.Y.; Bouchet, F.; Dauxois, T., Algebraic correlation functions and anomalous diffusion in the Hamiltonian Mean field model, J. Stat. Mech., 1, 20, (2007)
[79] Yin, Z.; Montgomery, D.C.; Clercx, H.J.H., Alternative statistical-mechanical descriptions of decaying two-dimensional turbulence in terms of “patches“ and “points”, Phys. Fluids, 15, 1937-1953, (2003) · Zbl 1186.76590
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.