×

Naturally bounded plumes. (English) Zbl 1284.76200

Summary: This paper investigates theoretically the vertical evolution of a turbulent plume into a linearly stratified ambient fluid, by regarding it as composed of two distinct regions. In the first region, called the positive buoyant region, the plume buoyancy and the plume momentum act in the same upward direction, whereas in the second region, called the negative buoyant region, they act in opposite directions. In a first step, analytical expressions for the plume variables at the transition height (i.e. between the two regions) are obtained from one-dimensional conservation equations, using the plume entrainment model and under the Boussinesq approximation. In a second step, these variables are used in order to determine analytically the buoyancy and volume fluxes as well as the density deficit of the plume at its top. In this investigation, the transition height (denoted \({z}_{t})\) and the total plume height (denoted \({z}_{p})\) are obtained in the form of two integrals. These integrals are evaluated asymptotically in three different cases associated with particular flow regimes. Finally, the limit of the Boussinesq assumption for such flows is discussed.

MSC:

76F35 Convective turbulence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1029/2004JB003460 · doi:10.1029/2004JB003460
[2] DOI: 10.1017/S0022112086001222 · doi:10.1017/S0022112086001222
[3] DOI: 10.1115/1.3450170 · doi:10.1115/1.3450170
[4] DOI: 10.1017/S0022112006000784 · Zbl 1177.76036 · doi:10.1017/S0022112006000784
[5] DOI: 10.1098/rspa.1956.0011 · Zbl 0074.45402 · doi:10.1098/rspa.1956.0011
[6] DOI: 10.1063/1.2926758 · Zbl 1182.76515 · doi:10.1063/1.2926758
[7] DOI: 10.1016/S0377-0273(02)00425-0 · doi:10.1016/S0377-0273(02)00425-0
[8] DOI: 10.1017/jfm.2011.487 · Zbl 1241.76290 · doi:10.1017/jfm.2011.487
[9] DOI: 10.1017/S0022112003006669 · Zbl 1069.76010 · doi:10.1017/S0022112003006669
[10] DOI: 10.1016/0307-904X(89)90024-3 · Zbl 0664.76058 · doi:10.1016/0307-904X(89)90024-3
[11] DOI: 10.1017/jfm.2011.214 · Zbl 1241.76162 · doi:10.1017/jfm.2011.214
[12] DOI: 10.1017/S0022112010000017 · Zbl 1193.76070 · doi:10.1017/S0022112010000017
[13] DOI: 10.3137/AO923.2008 · doi:10.3137/AO923.2008
[14] DOI: 10.1017/S0022112004003209 · Zbl 1065.76004 · doi:10.1017/S0022112004003209
[15] DOI: 10.1029/2007JB005458 · doi:10.1029/2007JB005458
[16] DOI: 10.1016/j.epsl.2010.10.037 · doi:10.1016/j.epsl.2010.10.037
[17] DOI: 10.1017/S0022112098008623 · Zbl 0930.76039 · doi:10.1017/S0022112098008623
[18] J. Fluid Mech. 533 pp 329– (2005)
[19] DOI: 10.1017/S0022112097008252 · Zbl 0945.76533 · doi:10.1017/S0022112097008252
[20] Delft Hydraul. Lab. Publ. 66 pp 145– (1969)
[21] DOI: 10.1146/annurev-fluid-121108-145430 · doi:10.1146/annurev-fluid-121108-145430
[22] DOI: 10.1017/S0022112097006332 · Zbl 0893.76094 · doi:10.1017/S0022112097006332
[23] DOI: 10.1029/95RG02096 · doi:10.1029/95RG02096
[24] DOI: 10.1029/JC094iC05p06213 · doi:10.1029/JC094iC05p06213
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.