×

Fundamental spectral theory of fractional singular Sturm-Liouville operator. (English) Zbl 1275.34007

Summary: We study spectral properties of a fractional singular Sturm-Liouville problem. We show that the eigenvalues and eigenfunctions are real and orthogonal, respectively.

MSC:

34A08 Fractional ordinary differential equations
34B24 Sturm-Liouville theory
34B16 Singular nonlinear boundary value problems for ordinary differential equations
34L10 Eigenfunctions, eigenfunction expansions, completeness of eigenfunctions of ordinary differential operators
34L15 Eigenvalues, estimation of eigenvalues, upper and lower bounds of ordinary differential operators
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R. S. Johnson, An Introduction To Sturm-Liouville Theory, University of Newcastle, 2006.
[2] A. Zettl, Sturm-Liouville Theory, vol. 121 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, USA, 2005. · Zbl 1103.34001
[3] W. O. Amrein, A. M. Hinz, and D. B. Pearson, Eds., Sturm-Liouville Theory, Past and Present, Birkhäuser, Basel, Switzerland, 2005. · Zbl 1103.34001 · doi:10.1007/3-7643-7359-8
[4] E. S. Panakhov and R. Yilmazer, “A Hochstadt-Lieberman theorem for the hydrogen atom equation,” Applied and Computational Mathematics, vol. 11, no. 1, pp. 74-80, 2012. · Zbl 1286.34024
[5] B. M. Levitan and I. S. Sargsjan, Introduction to Spectral Theory: Self adjoint Ordinary Differential Operators, American Mathematical Society, Providence, RI, USA, 1975. · Zbl 0302.47036
[6] J. Qi and S. Chen, “Eigenvalue problems of the model from nonlocal continuum mechanics,” Journal of Mathematical Physics, vol. 52, no. 7, Article ID 073516, 2011. · Zbl 1317.74054 · doi:10.1063/1.3610673
[7] E. S. Panakhov and M. Sat, “Reconstruction of potential function for Sturm-Liouville operator with Coulomb potential,” Boundary Value Problems, vol. 2013, article 49, 2013. · Zbl 1288.34014 · doi:10.1186/1687-2770-2013-49
[8] A. Carpinteri and F. Mainardi, Eds., Fractals and Fractional Calculus in Continum Mechanics, Telos: Springer, 1998.
[9] B. J. West, M. Bologna, and P. Grigolini, Physics of Fractal Operators, Springer, New York, NY, USA, 2003. · doi:10.1007/978-0-387-21746-8
[10] I. Podlubny, Fractional Differential Equations, vol. 198, Academic Press, San Diego, Calif, USA, 1999. · Zbl 0924.34008
[11] R. Hilfer, Ed., Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. · Zbl 0998.26002 · doi:10.1142/9789812817747
[12] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Philadelphia, Pa, USA, 1993. · Zbl 0818.26003
[13] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, NY, USA, 1993. · Zbl 0789.26002
[14] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204, Elsevier, Amsterdam, The Netherlands, 2006. · Zbl 1092.45003
[15] R. Yilmazer and E. Bas, “Fractional solutions of confluent hypergeometric equation,” Journal of the Chungcheong Mathematical Society, vol. 25, no. 2, pp. 149-157, 2012.
[16] X. Jiang and H. Qi, “Thermal wave model of bioheat transfer with modified Riemann-Liouville fractional derivative,” Journal of Physics A, vol. 45, no. 48, Article ID 485101, 2012. · Zbl 1339.80006 · doi:10.1088/1751-8113/45/48/485101
[17] X. Jiang and M. Xu, “The time fractional heat conduction equation in the general orthogonal curvilinear coordinate and the cylindrical coordinate systems,” Physica A, vol. 389, no. 17, pp. 3368-3374, 2010. · doi:10.1016/j.physa.2010.04.023
[18] E. Nakai and G. Sadasue, “Martingale Morrey-Campanato spaces and fractional integrals,” Journal of Function Spaces and Applications, vol. 2012, Article ID 673929, 29 pages, 2012. · Zbl 1254.46035 · doi:10.1155/2012/673929
[19] Y. Wang, L. Liu, and Y. Wu, “Existence and uniqueness of a positive solution to singular fractional differential equations,” Boundary Value Problems, vol. 2012, article 81, 2012. · Zbl 1279.34012 · doi:10.1186/1687-2770-2012-81
[20] D. B\ualeanu and O. G. Mustafa, “On the existence interval for the initial value problem of a fractional differential equation,” Hacettepe Journal of Mathematics and Statistics, vol. 40, no. 4, pp. 581-587, 2011. · Zbl 1247.34005
[21] M. Klimek, On Solutions of Linear Fractional Differential Equations of a Variational Type, The Publishing Office of Czestochowa, University of Technology, Czestochowa, Poland, 2009.
[22] Q. M. Al-Mdallal, “An efficient method for solving fractional Sturm-Liouville problems,” Chaos, Solitons and Fractals, vol. 40, no. 1, pp. 183-189, 2009. · Zbl 1197.65097 · doi:10.1016/j.chaos.2007.07.041
[23] V. S. Ertürk, “Computing eigenelements of Sturm-Liouville problems of fractional order via fractional differential transform method,” Mathematical & Computational Applications, vol. 16, no. 3, pp. 712-720, 2011. · Zbl 1246.65131
[24] M. Klimek and O. P. Argawal, “On a regular fractional Sturm-Liouville problem with derivatives of order in (0, 1),” in Proceedings of the 13th International Carpathian Control Conference, May 2012.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.