×

Using time scales to study multi-interval Sturm-Liouville problems with interface conditions. (English) Zbl 1263.34032

The authors consider a Sturm-Liouville problem defined on multiple intervals with interface conditions. The existence of a sequence of eigenvalues is established and the zero counts of the associated eigenfunctions are determined. Moreover, the authors reveal the continuous and discontinuous nature of the eigenvalues on the boundary condition. The approach in this paper is different from those in the literature. The authors transfer the Sturm-Liouville problem with interface conditions to a Sturm-Liouville problem on a time scale without interface conditions and then apply the Sturm-Liouville theory for equations on time scales. In this way, the authors are able to investigate the problem from a global point of view. Consequently, the authors results cover the cases when the potential function in the equation is not strictly greater than zero and when the domain consists of an infinite number of intervals.

MSC:

34B24 Sturm-Liouville theory
34N05 Dynamic equations on time scales or measure chains
34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
34L15 Eigenvalues, estimation of eigenvalues, upper and lower bounds of ordinary differential operators
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agarwal R.P., Bohner M.: Basic calculus on time scales and some of its applications. Results Math. 35, 3–22 (1999) · Zbl 0927.39003 · doi:10.1007/BF03322019
[2] Agarwal R.P., Bohner M., Wong P.J.Y.: Sturm–Liouville eigenvalue problems on time scales. Appl. Math. Comput. 99, 153–166 (1999) · Zbl 0938.34015 · doi:10.1016/S0096-3003(98)00004-6
[3] Altinisik N., Kadakal M., Mukhtarov O.Sh.: Eigenvalues and eigenfunctions of discontinuous Sturm–Liouville problems with eigenparameter-dependent boundary conditions. Acta Math. Hung. 102, 159–175 (2004) · Zbl 1052.34030 · doi:10.1023/B:AMHU.0000023214.99631.52
[4] Binding P., Browne P.: Asymptotics of eigencurves for second order ordinary differential equations, I. J. Differ. Equ. 88, 30–45 (1990) · Zbl 0723.34073 · doi:10.1016/0022-0396(90)90107-Z
[5] Binding P., Volkmer H.: Eigenvalues for two-parameter Sturm–Liouville equations. SIAM Rev. 38, 27–48 (1996) · Zbl 0869.34020 · doi:10.1137/1038002
[6] Bohner M., Peterson A.: Dynamic Equations on Time Scales, an Introduction with Applications. Birkhanser, Boston (2001) · Zbl 0978.39001
[7] Erbe L.H., Hilger S.: Sturmian theory on measure chains. Differ. Equ. Dyn. Syst. 1, 223–246 (1993) · Zbl 0868.39007
[8] Everitt W.N., Zettl A.: Sturm–Liouville differential operators in direct sum spaces. Rockey Mt. J. Math. 16, 497–516 (1986) · Zbl 0624.34020 · doi:10.1216/RMJ-1986-16-3-497
[9] Hao X., Sun J.: Regular Sturm–Liouville operators with transmission conditions at finite interior discontinuous points. J. Math. Sci. Adv. Appl. 4(2), 265–277 (2010) · Zbl 1207.34031
[10] Hilger S.: Analysis on measure chains–a unified approach to continuous and discrete calculus. Results Math. 18, 18–56 (1990) · Zbl 0722.39001 · doi:10.1007/BF03323153
[11] Kong Q.: Sturm–Liouville problems on time scales with separated boundary conditions. Results Math. 52, 111–121 (2008) · Zbl 1153.39022 · doi:10.1007/s00025-007-0277-x
[12] Kong Q., Wu H., Zettl A.: Left-definite Sturm–Liouville problems. J. Differ. Equ. 177, 1–26 (2001) · Zbl 1002.34016 · doi:10.1006/jdeq.2001.3997
[13] Kong Q., Wu H., Zettl A.: Dependence of the n-th Sturm–Liouville eigenvalue on the problem. J. Differ. Equ. 156, 328–356 (1999) · Zbl 0932.34081 · doi:10.1006/jdeq.1998.3613
[14] Lykov, A.V., Mikhailov, Yu.A.: The theory of heat and mass transfer, translated from Russian by I. Shechtman, Israel Program for Scientific Translations, Jerusalem (1965)
[15] Mukhtarov, O.S., Kadakal, M.: Spectral properties of of one Sturm–Liouville type problem with discontinuous weight, (Russian) Sibirsk. Math. Zh., 46(4), 860–785 (2005); translation in Siberian Math. J., 46(4), 681–694 (2005) · Zbl 1120.34016
[16] Mukhtarov O.S., Yakubov S.: Problems for differential equations with transmission conditions. Appl. Anal. 81, 1033–1064 (2002) · Zbl 1062.34094 · doi:10.1080/0003681021000029853
[17] Sun J., Wang A., Zettl A.: Two-interval Sturm–Liouville operators in direct sum spaces with inner product multiples. Result. Math. 50, 155–168 (2007) · Zbl 1148.34024 · doi:10.1007/s00025-006-0241-1
[18] Tikhonov A.N., Samarskii A.A.: Equations of Mathematical Physics. Dover Publications, New York (1990) · Zbl 0044.09302
[19] Titeux I., Yakubov Y.: Completeness of root functions for thermal conduction in a strip with piecewise continuous coefficients. Math. Models Methods Appl. Sci. 7, 1035–1050 (1997) · Zbl 0903.73008 · doi:10.1142/S0218202597000529
[20] Wang A., Sun J., Hao X., Yao S.: Completeness of eigenfunctions of Sturm–Liouville problems with transmission conditions. Methods Appl. Anal. 16, 299–312 (2009) · Zbl 1162.34350 · doi:10.1016/j.jmaa.2008.08.008
[21] Wang A., Sun J., Zettl A.: Two-interval Sturm–Liouville operators in Modified Hilbert spaces. J. Math. Anal. Appl. 328, 390–399 (2007) · Zbl 1116.47040 · doi:10.1016/j.jmaa.2006.05.058
[22] Zettl A.: Adjoint and self-adjoint boundary value problems with interface conditions. SIAM J. Appl. Math. 16, 851–859 (1968) · Zbl 0162.11201 · doi:10.1137/0116069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.