×

Emulating complex business cycles by using an electronic analogue. (English) Zbl 1254.91455

Summary: Long run growth of the US national economic system, for example, reveals a strong oscillatory behavior due to complex interactions of aggregates. However, modelizations of such dynamics often assume that instability is the outcome of linear and additive cycles determined by exogenous shocks. In this work, a modelization of endogenous nonlinear and inseparable cycles is retained to explain the highly complex business cycle phenomenon. Bouali’s system is built to this scope. Its numerical simulations exhibit a rich repertoire of nonlinear dynamical phenomena, but this paper introduces its electronic implementation. The robust plug and play chaotic circuit is designed to be easily realized using standard components in a rigorous, fast and inexpensive way. We find that experimental results display periodicity, bifurcations and chaos that match with high accuracy the corresponding theoretical values.

MSC:

91B64 Macroeconomic theory (monetary models, models of taxation)
91B62 Economic growth models
34C28 Complex behavior and chaotic systems of ordinary differential equations
91B55 Economic dynamics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] National Bureau of Economic Research, 2011. Available online at: http://www.nber.org/cycles.html; National Bureau of Economic Research, 2011. Available online at: http://www.nber.org/cycles.html
[2] Schumpeter, J. A., Business Cycles. A Theoretical, Historical and Statistical Analysis of the Capitalist Process (1939), McGraw-Hill Book Company: McGraw-Hill Book Company New York, Toronto, London
[3] Goodwin, R. M., A growth cycle, (Feinstein, C. H., Socialism, Capitalism and Economic Growth (1967), Cambridge University Press: Cambridge University Press Cambridge)
[4] Lotka, A. J., Elements of Physical Biology (1925), Williams & Wilkins Co.: Williams & Wilkins Co. Baltimore · JFM 51.0416.06
[5] Volterra, V., Variazioni e fluttuazioni del numero d’individui in specie animali conviventi, Mem. R. Accad. Naz. dei Lincei, Ser. VI, 2 (1926) · JFM 52.0450.06
[6] Van der Pol, B., On relaxation-oscillations, The London, Edinburgh and Dublin Phil. Mag. & J. Sci., 2, 7, 978-992 (1927) · JFM 52.0450.05
[7] Bouali, S., Feedback loop in extended Van Der Pol’s equation applied to an economic model of cycles, Internat. J. Bifur. Chaos, 9, 745-756 (1999) · Zbl 0970.34040
[8] Lorenz, E. N., The Essence of Chaos (1993), University of Washington Press: University of Washington Press Seattle, Washington · Zbl 0835.58001
[9] Sparrow, C., The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors (1982), Springer-Verlag: Springer-Verlag New York · Zbl 0504.58001
[10] Matson, L. E., The Malkus-Lorenz water wheel revisited, Amer. J. Phys., 75, 1114-1122 (2007)
[11] Kolà, M.; Gumbs, G., Theory for the experimental observation of chaos in a rotating waterwheel, Phys. Rev. A, 45, 626-637 (1992)
[12] Liu, Y.; Yang, Q., Dynamics of a new Lorenz-like chaotic system, Nonlinear Anal. RWA, 11, 2563-2572 (2010) · Zbl 1202.34083
[13] Li, X.-F.; Chlouverakis, K. E.; Xu, D.-L., Nonlinear dynamics and circuit realization of a new chaotic flow: a variant of Lorenz, Chen and Lü, Nonlinear Anal. RWA, 10, 2357-2368 (2009) · Zbl 1163.34306
[14] Fortuna, L.; Frasca, M.; Xibilia, M. G., Chua’s Circuit Implementations: Yesterday, Today and Tomorrow (2009), World Scientific
[15] Cuddington, J. T., (Capital Flights: Estimates, Issues and Explanations. Capital Flights: Estimates, Issues and Explanations, Princeton Studies in Int. Finance, vol. 58 (1986))
[16] Lorenz, E. N., Deterministic nonperiodic flow, J. Atmospheric Sci., 20, 130-141 (1963) · Zbl 1417.37129
[17] Madan, R. N., (Chua’s Circuit: A Paradigm for Chaos. Chua’s Circuit: A Paradigm for Chaos, World Scientific Series on Nonlinear Sciences, Series B, vol. 1 (1993), World Scientific: World Scientific Singapore) · Zbl 0861.58026
[18] Saito, T., Reality of chaos in four-dimensional hysteretic circuits, IEEE Trans. Circuits Syst. I, 38, 12, 1517-1524 (1991) · Zbl 0741.94021
[19] Mitsubori, K.; Saito, T., A four-dimensional plus hysteresis chaos generator, IEEE Trans. Circuits Syst. I, 41, 12, 782-789 (1994) · Zbl 0866.94036
[20] Fortuna, L.; Frasca, M.; Graziani, S.; Reddiconto, S., A chaotic circuit with ferroelectric nonlinearity, Nonlinear Dynam., 44, 1-4, 55-61 (2006) · Zbl 1101.78321
[21] Itoh, M.; Chua, L. O., Memristor oscillators, Internat. J. Bifur. Chaos, 18, 3183-3206 (2008) · Zbl 1165.94300
[22] Muthuswamy, B., Implementing memristor based chaotic circuits, Internat. J. Bifur. Chaos, 20, 1335-1350 (2010) · Zbl 1193.94082
[23] Muthuswamy, B., Simplest chaotic circuit, Internat. J. Bifur. Chaos, 20, 1567-1580 (2010)
[24] Buscarino, A.; Fortuna, L.; Frasca, M.; Gambuzza, L. V.; Sciuto, G., Memristive chaotic circuits based on cellular nonlinear networks, Internat. J. Bifur. Chaos, 22, 3 (2012), 1250070-1-13
[25] (Chen, G.; Ueta, T., Chaos in Circuits and Systems. Chaos in Circuits and Systems, World Scientific Series on Nonlinear Science, Series B, vol. 11 (2002)) · Zbl 1011.00021
[26] Lindberg, E.; Murali, K.; Tamasevicius, A., The smallest transistor-based nonautonomous chaotic circuit, IEEE Trans. Circuits Syst. II, 52, 10, 661-664 (2005)
[27] Hayes, S.; Grebogi, C.; Ott, E., Communicating with chaos, Phys. Rev. Lett., 70, 3031-3034 (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.