# zbMATH — the first resource for mathematics

Jump conditions for unsteady small perturbations at fluid-solid interfaces in the presence of initial flow and prestress. (English) Zbl 1231.74115
Summary: The goal of this paper is to investigate jump conditions for unsteady small perturbations at impermeable interfaces, slip or bonded, plane or not, between fluids and structures in the presence of initial flow and prestress. Based on conservative equations obtained from a mixed Eulerian-Lagrangian description, interface conditions are first derived in an elegant and straightforward manner thanks to the concept of generalized functions in distribution theory. These conditions are validated with exact conditions derived from a direct linearization of the standard jump conditions. For a straightforward comparison between both approaches, all conditions are written in terms of a curvilinear coordinate system attached to the interface. The normal Lagrangian displacement continuity across the interface is proved to be a sufficient condition. The jump conditions for mass, momentum, energy and entropy are discussed, yielding conditions for the Lagrangian perturbations of displacement, stress, heat flux and temperature. Displacement and stress jump conditions are shown to coincide with literature results. The mixed Eulerian-Lagrangian description is likely to be advantageous over its fully Eulerian or Lagrangian counterparts. It yields an interesting unification between existing formulations for inviscid fluids (Galbrun’s equation) and solids (updated Lagrangian formulation), together with simpler jump conditions.
##### MSC:
 74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.) 74B05 Classical linear elasticity 74S30 Other numerical methods in solid mechanics (MSC2010) 76D05 Navier-Stokes equations for incompressible viscous fluids 76M25 Other numerical methods (fluid mechanics) (MSC2010)
##### Keywords:
jump conditions; interface; vibration; acoustic; prestress; flow
CandS
Full Text:
##### References:
 [1] Horacek, J.; Zolotarev, I., Acoustic-structural coupling of vibrating cylindrical-shells with flowing fluid, J. fluids struct., 5, 487-501, (1991) [2] Coquart, L.; Depeursinge, C.; Curnier, A.; Ohayon, R., A fluid-structure interaction problem in biomechanics – prestressed vibrations of the eye by the finite-element method, J. biomech., 25, 1105-1118, (1992) [3] Norris, A.; Sinha, B., The speed of a wave along a fluid/solid interface in the presence of anisotropy and prestress, J. acoust. soc. am., 25, 1147-1154, (1995) [4] Degtyar, A.; Rokhlin, S., Stress effect on boundary conditions and elastic wave propagation through an interface between anisotropic media, J. acoust. soc. am., 104, 1992-2003, (1998) [5] Amabili, M.; Garziera, R., Vibrations of circular cylindrical shells with nonuniform constraints, elastic bed and added mass. part ii: shells containing or immersed in axial flow, J. fluids struct., 16, 31-51, (2002) [6] Amabili, M.; Garziera, R., Vibrations of circular cylindrical shells with nonuniform constraints, elastic bed and added mass. part iii: steady viscous effects on shells conveying fluid, J. fluids struct., 16, 795-809, (2002) [7] Schotté, J.; Ohayon, R., Effect of gravity on a free-free elastic tank partially filled with incompressible liquid, J. fluids struct., 18, 215-226, (2003) [8] Ottenio, M.; Destrade, M.; Ogden, R., Acoustic waves at the interface of a pre-stressed incompressible elastic solid and a viscous fluid, Int. J. non-linear mech., 42, 310-320, (2007) [9] Fernandez, M.; Moubachir, M., Sensitivity analysis for an incompressible aeroelastic system, Math. models methods appl. sci., 12, 1109-1130, (2002) · Zbl 1041.76016 [10] Fernandez, M.; Moubachir, M., A Newton method using exact Jacobians for solving fluid-structure coupling, Comput. struct., 83, 127-142, (2005) [11] Nayfeh, A.; Kaiser, J.; Telionis, D., Acoustics of aircraft engine-duct systems, Aiaa j., 13, 130-153, (1975) · Zbl 0308.76055 [12] Myers, M., On the acoustic boundary-condition in the presence of flow, J. sound vib., 71, 429-434, (1980) · Zbl 0448.76065 [13] Farassat, F.; Dunn, M., A simple derivation of the acoustic boundary condition in the presence of flow, J. sound vib., 224, 384-386, (1999) [14] B. Poirée, Les équations de l’acoustique linéaire et non-linéaire dans les fluides en mouvement, Ph.D. Thesis, Thèse d’état, Université Pierre et Marie Curie, Paris VI, 1982. [15] Poirée, B., The linear and non-linear equations in the flow of an ideal fluid, Acustica, 57, 5-25, (1985) · Zbl 0634.76080 [16] Godin, O., On small amplitude waves in an inhomogeneous moving medium, Dokl. akad. nauk, 351, 322-325, (1996) · Zbl 0929.76012 [17] Godin, O., Reciprocity and energy theorems for waves in a compressible inhomogeneous moving fluid, Wave motion, 25, 143-167, (1997) · Zbl 0930.76080 [18] E. Goy, Résolution par une méthode d’éléments finis d’un problème vibro-acoustique en présence d’un écoulement non-uniforme, Ph.D. Thesis, Université de Technologie de Compiègne, 2000. [19] Schotté, J.; Ohayon, R., Incompressible hydroelastic vibrations: finite element modeling of the elastogravity operator, Comput. struct., 83, 209-219, (2005) [20] Norris, A.; Sinha, B.; Kostek, S., Acoustoelasticity of solid fluid composite systems, Geophys. J. int., 118, 439-446, (1994) [21] Farassat, F., Discontinuities in aerodynamics and aeroacoustics – concept and applications of generalized derivatives, J. sound vib., 55, 165-193, (1977) · Zbl 0365.76062 [22] F. Farassat, Introduction to generalized functions with applications in aerodynamics and aeroacoustics, Technical Report, NASA Technical Paper 3428, 1994 (corrected copy (April 1996) (1994)). [23] Kanwal, R., Generalized functions theory and technique, (1998), Birkhauser Boston · Zbl 0893.46032 [24] Zubov, L., Theory of small deformations of prestressed thin shells, J. appl. math. mech., 40, 73-82, (1976) · Zbl 0352.73072 [25] Washizu, K., Variational methods in elasticity and plasticity, (1982), Pergamon Press · Zbl 0164.26001 [26] Kim, B.; Youn, S., A viscoelastic constitutive model of rubber under small oscillatory load superimposed on large static deformation, Arch. appl. mech., 71, 748-763, (2001) · Zbl 1050.74014 [27] Bathe, K.-J., Finite element procedures, (1996), Prentice-Hall New Jersey [28] Yang, Y.-B.; Kuo, S.-R., Nonlinear framed structures, (1994), Prentice-Hall Singapore [29] Pao, Y.; Sachse, W.; Fukuoka, H., Acoustoelasticity and ultrasonic measurements of residual-stresses, Phys. acoust., 17, 61-143, (1984) [30] Galbrun, H., Propagation d’une onde sonore dans l’atmosphère et théorie des zones de silence, (1931), Gauthier-Villars Paris · JFM 57.1562.12 [31] Peyret, C.; Elias, G., Finite-element method to study harmonic aeroacoustics problems, J. acoust. soc. am., 110, 661-668, (2001) [32] Treyssède, F.; Gabard, G.; Tahar, M.B., A mixed finite element method for acoustic wave propagation in moving fluids based on an eulerian – lagrangian description, J. acoust. soc. am., 113, 705-716, (2003) [33] Hutter, K.; Johnk, K., Continuum methods of physical modeling, (2004), Springer-Verlag Berlin · Zbl 1058.76001 [34] Coirier, J., Mécanique des milieux continus, (1997), Dunod Paris [35] Poirée, B., LES équations de l’acoustique linéaire dans un fluide parfait au repos à caractéristiques indéfiniment différentiables par morceaux, Rev. cethedec, 52, 69-79, (1977) · Zbl 0383.76055 [36] Gray, A.; Abbena, E.; Salamon, S., Modern differential geometry of curves and surfaces with Mathematica, (2006), Chapman & Hall Boca Raton · Zbl 1123.53001 [37] Synge, J.-L.; Schild, A., Tensor calculus, (1978), Dover · Zbl 0403.53008 [38] Chapelle, D.; Bathe, K.J., The finite element analysis of shells – fundamentals, (2003), Springer · Zbl 1103.74003 [39] Horowitz, S.; Sigman, R.; Zinn, B., An iterative finite element-integral technique for predicting sound radiation from turbofan inlets in steady flight, Aiaa j., 24, 1256-1262, (1986) · Zbl 0617.76093 [40] Eversman, W.; Okunbor, D., Aft Fan duct acoustic radiation, J. sound vib., 213, 235-257, (1998) [41] Eversman, W., The boundary condition at an impedance wall in a non-uniform duct with potential Mean flow, J. sound vib., 246, 63-69, (2001) [42] Eversman, W., The boundary condition at an impedance wall in a non-uniform duct with potential Mean flow (erratum), J. sound vib., 258, 791-792, (2002) [43] Rienstra, S.; Eversman, W., A numerical comparison between the multiple-scales and finite-element solution for sound propagation in lined flow ducts, J. fluid mech., 437, 367-384, (2001) · Zbl 0982.76077 [44] Treyssède, F.; Tahar, M.B., Validation of a finite element method for sound propagation and vibro-acoustic problems with swirling flows, Acta acust. united acust., 90, 731-745, (2004) [45] Gabard, G.; Treyssède, F.; Tahar, M.B., A numerical method for vibro-acoustic problems with sheared Mean flows, J. sound .vib., 272, 991-1011, (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.