×

Computational model of soft tissues in the human upper airway. (English) Zbl 1244.92013

Summary: This paper presents a three-dimensional finite element model of the tongue and surrounding soft tissues with potential application to the study of sleep apnoea and of linguistics and speech therapy. The anatomical data was obtained from the Visible Human Project, and the underlying histological data was also extracted and incorporated into the model. Hyperelastic constitutive models were used to describe the material behaviour, and material incompressibility was accounted for. An active A.V. Hill [Proc. R. Soc. London, Ser. B 141, 104–117 (1953)] three-element muscle model was used to represent the muscular tissue of the tongue. The neural stimulus for each muscle group was determined through the use of a genetic algorithm-based neural control model. The fundamental behaviour of the tongue under gravitational and breathing-induced loading is investigated. It is demonstrated that, when a time-dependent loading is applied to the tongue, the neural model is able to control the position of the tongue and produce a physiologically realistic response for the genioglossus.

MSC:

92C30 Physiology (general)
92C50 Medical applications (general)
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
90C59 Approximation methods and heuristics in mathematical programming

Software:

deal.ii; GSL; GALib
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Wilhelms-Tricario, Physiological modeling of speech production: Methods for modeling soft-tissue articulators, Journal of the Acoustical Society of America 97 pp 3085– (1995) · doi:10.1121/1.411871
[2] Sanguineti, A dynamic biomechanical model for neural control of speech production, Journal of the Acoustical Society of America 103 pp 1615– (1998) · doi:10.1121/1.421296
[3] Fang, A model-based investigation of activations of the tongue muscles in vowel production, Acoustical Science and Technology 30 pp 277– (2009) · doi:10.1250/ast.30.277
[4] Gerard, A 3D dynamical biomechanical tongue model to study speech motor control, Recent Research Developments in Biomechanics 1 pp 49– (2003)
[5] Vogt, Efficient 3d finite element modeling of a muscle-activated tongue, ISBMS 06 pp 19– (2006)
[6] Wu MC Han JC Röhrle O Thorpe W Nielsen P Using three-dimensional finite element models and principles of active muscle contraction to analyse the movement of the tongue 11th Australian International Conference on Speech Science & Technology 2006 354 359
[7] Buchaillard, A biomechanical model of cardinal vowel production: Muscle activations and the impact of gravity on tongue positioning, Acoustical Society of America 126 pp 2033– (2009) · doi:10.1121/1.3204306
[8] Stavness, Coupled hard-soft tissue simulation with contact and constraints applied to jaw-tongue-hyoid dynamics, International Journal for Numerical Methods in Engineering 27 pp 367– (2011) · Zbl 1208.92006
[9] Huang, Computational Simulation of Human Upper Airway Collapse using a Pressure-/ State-Dependent Model of Genioglossal Muscle Contraction under Laminar Flow Conditions 99 (2005)
[10] Huang, Use of computational modeling to predict responses to upper airway surgery in obstructive sleep apnea, Laryngoscope 117 pp 648– (2007) · doi:10.1097/MLG.0b013e318030ca55
[11] Fujita, A computational tongue model and its clinical application, Oral Science International 109 pp 97– (2007) · doi:10.1016/S1348-8643(07)80004-8
[12] Martins, A numerical model of passive and active behaviour of skeletal muscles, Computer Methods in Applied Mechanics and Engineering 151 pp 419– (1998) · Zbl 0906.73051 · doi:10.1016/S0045-7825(97)00162-X
[13] Martins, A finite element model of skeletal muscles, Virtual and Physical Prototyping 1 (1) pp 159– (2006) · doi:10.1080/17452750601040626
[14] Herzog, Considerations on muscle contraction, Journal of Electromyography and Kinesiology 12 pp 425– (2002) · doi:10.1016/S1050-6411(02)00036-6
[15] Lieber, Skeletal Muscle Structure, Function and Plasticity: The Physiological Basis of Rehabilitation (2002)
[16] US National Library of Medicine The Visible Human Project® http://www.nlm.nih.gov/research/visible/visible_human.html 2009 http://www.nlm.nih.gov/research/visible/visible_human.html
[17] Materialise 2010 http://www.materialise.com/mimics
[18] Gray’s Anatomy (1967)
[19] Mortley, The Development and Disorders of Speech in Childhood (1972)
[20] Agur, Grant’s Atlas of Anatomy (2005)
[21] Ansys 2010 http://www.ansys.com/products/icemcfd.asp
[22] Miyawaki, A preliminary report on the electromyographic study of the activity of lingual muscles, Annual Bulletin RILP 9 pp 91– (1975)
[23] Dang, A physiological articulatory model for simulating speech production process, Acoustical Science and Technology 22 pp 415– (2001) · doi:10.1250/ast.22.415
[24] Humphrey, On constitutive relations and finite deformations of passive cardiac tissue: I. A pseudostrain-energy function, Journal of Biomechanical Engineering 109 pp 298– (1987) · doi:10.1115/1.3138684
[25] Holtzapfel, A new constitutive framework for arterial wall mechanics and a comparative study of material models, Journal of Elasticity 61 pp 1– (2000) · Zbl 1023.74033 · doi:10.1023/A:1010835316564
[26] Baaijens, Modeling collagen remodeling, Journal of Biomechanics 43 pp 166– (2010) · doi:10.1016/j.jbiomech.2009.09.022
[27] Planas, Constitutive model for fibre-reinforced materials with deformable matrices, Physical Review E - Statistical, Nonlinear and Soft Matter Physics 76 pp 041 903– (2007) · doi:10.1103/PhysRevE.76.041903
[28] van Oijen CHGA Mechanics and design of fiber-reinforced vascular prostheses PhD Thesis 2003
[29] Van Ee, Quantifying skeletal muscle properties in cadaveric test specimens: Effects of mechanical loading, postmortem time, and freezer storage, Journal of Biomechanical Engineering 122 pp 9– (2000) · doi:10.1115/1.429621
[30] Van Loocke, A validated model of passive muscle in compression, Journal of Biomechanics 39 pp 2999– (2006) · doi:10.1016/j.jbiomech.2005.10.016
[31] Simo, Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms, Computer Methods in Applied Mechanics and Engineering 85 pp 273– (1991) · Zbl 0764.73104 · doi:10.1016/0045-7825(91)90100-K
[32] Miehe, Aspects of the formulation and finite strain element inplementation of large strain isotropic elasticity, International Journal for Numerical Methods in Engineering 37 pp 1981– (1994) · Zbl 0804.73067 · doi:10.1002/nme.1620371202
[33] Nagtegaal, On numerically accurate finite element solutions in the fully plastic range, Computer Methods in Applied Mechanics and Engineering 4 pp 153– (1974) · Zbl 0284.73048 · doi:10.1016/0045-7825(74)90032-2
[34] Simo, Variational and projection methods for the volume constraint in finite deformation elasto-plasticity, Computer Methods in Applied Mechanics and Engineering 51 pp 177– (1985) · Zbl 0554.73036 · doi:10.1016/0045-7825(85)90033-7
[35] Bangerth, deal.II -a general-purpose object-oriented finite element library, ACM Transactions on Mathematical Software 33 (4) (2007) · Zbl 1365.65248 · doi:10.1145/1268776.1268779
[36] Bangerth W Kanschat G deal.II Differential Equations Analysis Library, Technical Reference 2011 http://www.dealii.org
[37] Miller-Young, Material properties of the human calcaneal fat pad in compression: Experiment and theory, Journal of Biomechanics 35 pp 1523– (2002) · doi:10.1016/S0021-9290(02)00090-8
[38] Perrier, Influences of tongue biomechanics on speech movements during the production of velar stop consonants: A modeling study, Journal of the Acoustical Society of America 114 pp 1582– (2003) · doi:10.1121/1.1587737
[39] Dang, Construction and control of a physiological articulatory model, Journal of the Acoustical Society of America 115 pp 853– (2004) · doi:10.1121/1.1639325
[40] Fung, Biomechanics: Mechanical Properties of Living Tissues Second Edition (1993)
[41] Abd-El-Malek, Observations on the morphology of the human tongue, Journal of Anatomy 73 pp 201– (1939)
[42] Takemoto, Morphological analyses of the human tongue musculature for three-dimensional modeling, Journal of Speech, Language, and Hearing Research 44 pp 95– (2001) · doi:10.1044/1092-4388(2001/009)
[43] Lieber, Inferior mechanical properties of spastic muscle bundles due to hypertrophic but compromised extracellular matrix material, Muscle Nerve 28 pp 464– (2003) · doi:10.1002/mus.10446
[44] Humbert, Simultaneous estimation of tongue volume and fat fraction using ideal-fse, Journal of Magnetic Resonance Imaging 28 pp 504– (2008) · doi:10.1002/jmri.21431
[45] Miller, Muscle, adipose, and connective tissue variations in intrinsic musculature of the adult human tongue, Journal of Speech, Language, and Hearing Research 45 pp 51– (2002) · doi:10.1044/1092-4388(2002/004)
[46] Press, Numerical Recipes: The Art of Scientific Computing (2007) · Zbl 1132.65001
[47] Hill, The mechanics of active muscle, Proceedings of the Royal Society of London. Series B. 141 pp 104– (1953) · doi:10.1098/rspb.1953.0027
[48] Hill, The heat of shortening and the dynamic constants of muscle, Proceedings of the Royal Society of London, Series B 126 pp 136– (1938) · doi:10.1098/rspb.1938.0050
[49] Johansson, A finite-element model for the mechanical analysis of skeletal muscles, Journal of Theoretical Biology 206 pp 131– (2000) · doi:10.1006/jtbi.2000.2109
[50] Pandy, An optimal control model for maximum-height human jumping, Journal of Biomechanics 23 pp 1185– (1990) · doi:10.1016/0021-9290(90)90376-E
[51] Malhotra, Genioglossal but not palatal muscle activity relates closely to pharyngeal pressure, American Journal of Respiratory and Critical Care Medicine 162 pp 1058– (2000) · doi:10.1164/ajrccm.162.3.9912067
[52] Stanchina, Genioglossus muscle responsiveness to chemical and mechanical stimuli during non-rapid eye movement sleep, American Journal of Respiratory and Critical Care Medicine 165 pp 945– (2002) · doi:10.1164/ajrccm.165.7.2108076
[53] Pierce, Upper airway collapsibility, dilator muscle activation and resistance in sleep apnoea, European Respiratory Journal pp 345– (2007) · doi:10.1183/09031936.00063406
[54] Bailey, Activities of human genioglossus motor units, Respiratory Physiology & Neurobiology 179 pp 14– (2011) · doi:10.1016/j.resp.2011.04.018
[55] Cheng, Movement of the tongue during normal breathing in awake healthy humans, The Journal of Physiology 586 pp 4283– (2008) · doi:10.1113/jphysiol.2008.156430
[56] Mitchell, An Introduction to Genetic Algorithms (1999) · Zbl 0906.68113
[57] Whitley, A genetic algorithm tutorial, Statistics and Computing 4 pp 65– (1994) · doi:10.1007/BF00175354
[58] Wall M GAlib: A C++ Library of Genetic Algorithm Components July 2010 http://lancet.mit.edu/ga/ 2011
[59] Peterson, Biomechanics: Principles and Applications (2008)
[60] Reilly, The mechanical properties of cortical bone, The Journal of Bone and Joint Surgery 56 pp 1001– (1974) · doi:10.2106/00004623-197456050-00012
[61] Li, Nonlinear analysis of cartilage in unconfined ramp compression using a fibril reinforced poroelastic model, Clinical Biomechanics 14 pp 673– (1999) · doi:10.1016/S0268-0033(99)00013-3
[62] Erdemir, An inverse finite-element model of heel-pad indentation, Journal of Biomechanics 39 pp 1279– (2006) · doi:10.1016/j.jbiomech.2005.03.007
[63] Farvid, Association of adiponectin and resistin with adipose tissue compartments, insulin resistance and dyslipidaemia, Diabetes, Obesity and Metabolism 7 pp 406– (2005) · doi:10.1111/j.1463-1326.2004.00410.x
[64] Gee, A computational strategy for prestressing patient-specific biomechanical problems under finite deformation, International Journal for Numerical Methods in Engineering 26 pp 52– (2010) · Zbl 1180.92009
[65] Van Hirtum A Chouly F Teul A Payan XYP In-vitro study of pharyngeal pressure losses at the origin of obstructive sleep apnea Engineering in Medicine and Biology Society, 2003. Proceedings of the 25th Annual International Conference of the IEEE 2004
[66] Galassi, GNU Scientific Library Reference Manual (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.