×

Direct numerical simulation of fluid flow and heat transfer in periodic wavy channels with rectangular cross-sections. (English) Zbl 1235.80028

Summary: Fully-developed flow and heat transfer in periodic wavy channels with rectangular cross sections are studied using direct numerical simulation, for increasing Reynolds numbers spanning from the steady laminar to transitional flow regimes. The results show that steady flow is characterized by the formation of symmetric secondary flow or Dean vortices when liquid flows past the bends. It is found that the patterns of Dean vortices may evolve along the flow direction, thus leading to chaotic advection, which can greatly enhance the convective fluid mixing and heat transfer. With increasing Reynolds numbers, the flow undergoes transition from a steady state to a periodic one with a single frequency, and subsequently to a quasiperiodic flow with two incommensurate fundamental frequencies. Within these unsteady regimes, the flow is characterized by very complex Dean vortices patterns which evolve temporally and spatially along the flow direction, and the flow symmetry may even be lost. Further increase in Reynolds number leads to chaotic flow, where the Fourier spectrum of the velocity evolution becomes broadband. The bifurcation scenario in wavy channels may thus share some common features with the well-known Ruelle-Takens-Newhouse scenario. Heat transfer simulation in all flow regimes is carried out with constant wall temperature condition and liquid water as the coolant. It is found that due to the efficient mixing in wavy channels, the heat transfer performance is always significantly more superior to that of straight channels with the same cross sections; at the same time the pressure drop penalty of wavy channels can be much smaller than the heat transfer enhancement. The present study shows that these wavy channels may have advantages over straight channels and thus serve as promising candidates for incorporation into efficient heat transfer devices.

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)
76F65 Direct numerical and large eddy simulation of turbulence
76M12 Finite volume methods applied to problems in fluid mechanics
80M12 Finite volume methods applied to problems in thermodynamics and heat transfer

Software:

FLUENT; GAMBIT
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Schönfeld, F.; Hardt, S.: Simulation of helical flows in micro channels, Aiche J. 50, 771-778 (2004)
[2] Jiang, F.; Drese, K. S.; Hardt, S.; Küpper, M.; Schönfeld, F.: Helical flows and chaotic mixing in curved micro channels, Aiche J. 50, 2297-2305 (2004)
[3] Kalb, C. E.; Seader, J. D.: Heat and mass transfer phenomena for viscous flow in curved circular tubes, Int. J. Heat mass transfer 15, No. 4, 801-817 (1972) · Zbl 0235.76042 · doi:10.1016/0017-9310(72)90122-6
[4] Masliyah, J. H.; Nandakumar, K.: Fully-developed viscous flow and heat transfer in curved semi-circular sectors, Aiche J. 25, No. 3, 478-487 (1979)
[5] Wang, L.; Yang, T.: Bifurcation and stability of forced convection in curved ducts of square cross-section, Int. J. Heat mass transfer 47, 2971-2987 (2004) · Zbl 1079.76538 · doi:10.1016/j.ijheatmasstransfer.2004.03.002
[6] Yang, G.; Dong, Z. F.; Ebadian, M. A.: Laminar forced convection in a helicoidal pipe with fine pitch, Int. J. Heat mass transfer 38, No. 5, 853-862 (1995) · Zbl 0925.76614 · doi:10.1016/0017-9310(94)00199-6
[7] Rosaguti, N. R.; Fletcher, D. F.; Haynes, B. S.: Laminar flow and heat transfer in a periodic serpentine channel with semi-circular crosssection, Int. J. Heat mass transfer 49, No. 17 – 18, 2912-2923 (2006) · Zbl 1189.76187 · doi:10.1016/j.ijheatmasstransfer.2006.02.015
[8] Geyer, P. E.; Rosaguti, N. R.; Fletcher, D. F.; Haynes, B. S.: Laminar thermohydraulics of square ducts following a serpentine channel path, Microfluid. nanofluid. 2, No. 3, 195-204 (2006)
[9] Geyer, P. E.; Rosaguti, N. R.; Fletcher, D. F.; Haynes, B. S.: Laminar flow and heat transfer in periodic serpentine mini-channels, J. enhanced heat transfer 13, No. 4, 309-320 (2006)
[10] Geyer, P. E.; Fletcher, D. F.; Haynes, B. S.: Laminar flow and heat transfer in a periodic trapezoidal channel with semi-circular crosssection, Int. J. Heat mass transfer 50, No. 17 – 18, 3471-3480 (2006) · Zbl 1113.76055 · doi:10.1016/j.ijheatmasstransfer.2007.01.050
[11] Rosaguti, N. R.; Fletcher, D. F.; Haynes, B. S.: Low Reynolds number heat transfer enhancement in sinusoidal channels, Chem. eng. Sci. 62, No. 3, 694-702 (2007)
[12] Manglik, R. M.; Zhang, J.; Muley, A.: Low Reynolds number forced convection in three-dimensional wavy-plate-fin compact channels: fin density effects, Int. J. Heat mass transfer 48, No. 8, 1439-1449 (2005) · Zbl 1189.76497 · doi:10.1016/j.ijheatmasstransfer.2004.10.022
[13] Sui, Y.; Teo, C. J.; Lee, P. S.; Chew, Y. T.; Shu, C.: Fluid flow and heat transfer in wavy microchannels, Int. J. Heat mass transfer 53, 2760-2772 (2010) · Zbl 1191.80032 · doi:10.1016/j.ijheatmasstransfer.2010.02.022
[14] Sui, Y.; Teo, C. J.; Lee, P. S.: An experimental study of flow friction and heat transfer in wavy microchannels with rectangular cross-section, Int. J. Thermal sci. (2011)
[15] Gong, L.; Kota, K.; Tao, W.; Joshi, Y.: Parametric numerical study of flow heat transfer in microchannels with wavy walls, ASME J. Heat transfer 133, 051702 (2011)
[16] Aref, H.: Stirring by chaotic advection, J. fluid mech. 143, 1-21 (1984) · Zbl 0559.76085 · doi:10.1017/S0022112084001233
[17] Aref, H.: The development of chaotic advection, Phys. fluids 14, No. 4, 1315-1325 (2002) · Zbl 1185.76034 · doi:10.1063/1.1458932
[18] Rush, T. A.; Newell, T. A.; Jacobi, A. M.: An experimental study of flow and heat transfer in sinusoidal wavy passages, Int. J. Heat mass transfer 42, No. 9, 1541-1553 (1999)
[19] GAMBIT 2.2 User’s Guide, 2000, Lebanon, NH, Fluent Inc.
[20] FLUENT 6 User’s Guide, 2000, Lebanon, NH, Fluent Inc.
[21] Shah, R. K.; London, A. L.: Laminar flow forced convection in ducts, (1978)
[22] Hobbs, D. M.; Muzzio, F. J.: Optimization of a static mixer using dynamical systems techniques, Chem. eng. Sci. 53, 3199-3213 (1998)
[23] Aubin, J.; Fletcher, D. F.; Xuereb, C.: Design of micromixers using CFD modeling, Chem. eng. Sci. 60, 2503-2516 (2005)
[24] Niu, X. D.; Chew, Y. T.; Shu, C.: Simulation of flows around an impulsively started circular cylinder by Taylor series expansion- and least squares-based lattice Boltzmann method, J. comput. Phys. 188, 176-193 (2003) · Zbl 1038.76033 · doi:10.1016/S0021-9991(03)00161-X
[25] Ottino, J. M.: The kinematic of mixing: stretching, chaos and transport, (1989) · Zbl 0721.76015
[26] Ottino, J. M.: Mixing, chaotic advection and turbulence, Ann. rev. Fluid mech. 22, 207-253 (1990)
[27] Stroock, A. D.; Dertinger, S. K. W.; Ajdari, A.; Mezic, I.; Stone, H. A.; Whitesides, G. M.: Chaotic mixer for microchannels, Science 295, 647-651 (2002)
[28] Xia, H. M.; Wan, S. Y. M.; Shu, C.; Chew, Y. T.: Chaotic micromixers using two-layer crossing channels to exhibit fast mixing at low Reynolds numbers, Lab chip 5, 748-755 (2005)
[29] Xia, H. M.; Wan, S. Y. M.; Shu, C.; Chew, Y. T.: Influence of the Reynolds number on chaotic mixing in a spatially periodic micromixer and its characterization using dynamical system techniques, J. micromech. Microeng. 16, 53-61 (2006)
[30] Chagny, C.; Castelain, C.; Peerhossaini, H.: Chaotic heat transfer for heat exchanger design and comparison with a regular regime for a large range of Reynolds numbers, Appl. thermal eng. 20, 1615-1648 (2000)
[31] Lasbet, Y.; Auvity, B.; Castelain, C.; Peerhossaini, H.: A chaotic heat-exchanger for PEMFC cooling applications, J. power sources 156, 114-118 (2006)
[32] Karniadakis, G. E.; Triantafyllou, G. S.: Three-dimensional dynamics and transition to turbulence in the wake of bluff objects, J. fluid mech. 238, 1-30 (1992) · Zbl 0754.76043 · doi:10.1017/S0022112092001617
[33] Guzmán, A. M.; Amon, C. H.: Dynamical flow characterization of transitional and chaotic regimes in converging diverging channels, J. fluid mech. 321, 25-57 (1996) · Zbl 0887.76023 · doi:10.1017/S002211209600763X
[34] Guzmán, A. M.; Valle, M. D.: Heat transfer enhancement in grooved channels due to flow bifurcations, Heat mass transfer 42, 967-975 (2006)
[35] Zhang, J.; Liu, N. S.; Lu, X. Y.: Route to a chaotic state in fluid flow past an inclined flat plate, Phys. rev. E 79, 045306 (2009)
[36] Ruelle, D.; Takens, F.: On the nature of turbulence, Commun. math. Phys. 20, 167-192 (1971) · Zbl 0223.76041 · doi:10.1007/BF01646553
[37] Newhouse, S.; Ruelle, D.; Takens, F.: Occurrence of strange axiom A attractors near quasiperiodic flow on tm, m\(\geqslant \)3, Commun. math. Phys. 64, 35-40 (1978) · Zbl 0396.58029 · doi:10.1007/BF01940759
[38] Feigenbaum, M.: The transition to aperiodic behavior in turbulent systems, Commun. math. Phys. 77, 65-86 (1980) · Zbl 0465.76050 · doi:10.1007/BF01205039
[39] Pulliam, T. H.; Vastano, J. A.: Transition to chaos in an open unforced 2D flow, J. comput. Phys. 105, 133-149 (1993) · Zbl 0783.76062 · doi:10.1006/jcph.1993.1059
[40] Manneville, P.; Pomeau, Y.: Different ways to turbulence in dissipative dynamical systems, Physical D 1, 219-226 (1980)
[41] Tuckerman, D. B.; Pease, R. F. W.: High-performance heat-sinking for VLSI, IEEE electron dev. Lett. 2, No. 5, 126-129 (1981)
[42] Hassan, I.; Phutthavong, P.; Abdelgawad, M.: Microchannel heat sinks: an overview of the state-of-the-art, Microscale thermal eng. 8, 183-205 (2004)
[43] Garimella, S. V.; Sobhan, C. B.: Transport in microchannels – A critical review, Annu. rev. Heat transfer 13, 1-50 (2003)
[44] Metwally, H. M.; Manglik, R. M.: Enhanced heat transfer due to curvature-induced lateral vortices in laminar flows in sinusoidal corrugated-plate channels, Int. J. Heat mass transfer 47, No. 10 – 11, 2282-2292 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.