×

Optimal convective heat transfer in double pipe with parabolic fins. (English) Zbl 1231.80017

Summary: Optimal configurations of a finned annulus with parabolic fins are investigated for maximum convection by employing trust-region and genetic algorithms. The flow is considered to be steady, laminar, incompressible, fully-developed and subjected to constant heat flux boundary condition. The finite element method is employed to compute field variables for providing function values to the optimizers. Using the Nusselt number as the objective function, various optimal configurations are proposed depending on practical and industrial requirements. A comparison of optimal configurations of parabolic fins with those of trapezoidal and triangular fins indicates that no single fin-shape is best in all situations and for all criteria.

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)
76D55 Flow control and optimization for incompressible viscous fluids
76M10 Finite element methods applied to problems in fluid mechanics
80M10 Finite element, Galerkin and related methods applied to problems in thermodynamics and heat transfer
80M50 Optimization problems in thermodynamics and heat transfer
90C59 Approximation methods and heuristics in mathematical programming
68T05 Learning and adaptive systems in artificial intelligence

Software:

GQTPAR; Matlab
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Razelos, P.: A critical review of extended surface heat transfer, Heat transfer eng. 24, No. 6, 11-28 (2003)
[2] Gosselin, S.: Review of utilization of genetic algorithms in heat transfer problems, Int. J. Heat mass transfer 52, 2169-2188 (2009) · Zbl 1158.80306
[3] Fabbri, G.: A genetic algorithm for fin profile optimization, Int. J. Heat mass transfer 40, No. 9, 2165-2172 (1997) · Zbl 0933.74543 · doi:10.1016/S0017-9310(96)00294-3
[4] Fabbri, G.: Heat transfer optimization in internally finned tubes under laminar flow conditions, Int. J. Heat mass transfer 41, No. 10, 1243-1253 (1998) · Zbl 0956.76510 · doi:10.1016/S0017-9310(97)00209-3
[5] Fabbri, G.: Heat transfer optimization in finned annular ducts under laminar-flow conditions, Heat transfer eng. 19, No. 4, 1521-1537 (1998)
[6] Chang, Y. P. M.; Hu, H.: Optimization of finned tubes for heat transfer in laminar flow, J. heat transfer 95, 332-338 (1973)
[7] Zeitoun, O.; Hegazy, A. S.: Heat transfer for laminar flow in internally finned pipes with different fin heights and uniform wall temperature, Heat mass transfer 40, 253-259 (2004)
[8] Park, K.; Kim, B. S.; Lim, H. J.; Han, J. W.; Oh, P. K.; Lee, J.; Yu, K. Y.: Performance improvement in internally finned tube by shape optimization, Int. J. Appl. sci. Eng. technol. 4, No. 3 (2007)
[9] S. Colle, C.R. Maliska, Optimization of finned double tubes for heat transfer in laminar flow, Brazilian Congress on Mechanical Engineering, vol. B. (A76-45126 23-31), Rio de Janeiro, Universidade Fedural, 1976, pp. 475 – 490.
[10] Aziz, A.; Maskinde, O. D.: Heat transfer and entropy generation in a two-dimensional orthotropic convection pin fin, Int. J. Exergy 7, No. 5, 579-792 (2010)
[11] K. S. Syed, Simulation of fluid flow through a double-pipe heat exchanger, Ph.D. Thesis, Department of Mathematics, University of Bradford, 1997.
[12] Syed, K. S.; Iqbal, M.; Mir, N. A.: Convective heat transfer in the thermal entrance region of finned double-pipe, Heat mass transfer, No. 43, 449-457 (2007)
[13] Syed, K. S.; Ishaq, M.; Buksh, M.: Laminar convection in the annulus of a double-pipe with triangular fins, Comput. fluids 44, 43-55 (2011) · Zbl 1271.76318
[14] Syed, K. S.; Iqbal, Z.; Ishaq, M.: Optimal configuration of finned annulus in a double pipe with fully developed laminar flow, Appl. therm. Eng. 31, 1435-1446 (2011)
[15] Z. Iqbal, M. Ishaq, K.S. Syed, Optimization of laminar convection on the shell-side of double pipe with triangular fins, International Journal of Heat and Fluid Flow (2011), submitted for publication. · Zbl 1231.80017
[16] Shah, R. K.; London, A. L.: Laminar flow forced convection in ducts, (1978)
[17] MATLAB Toolboxes (online). Available from: <http://www.mathworks.com>.
[18] George, P. L.: Automatic mesh generation – application to finite element methods, (1991) · Zbl 0808.65122
[19] Conn, A. R.; Gould, N. I. M.; Toint, Ph.L.: Trust-region methods, MPS-SIAM series on optimization (2000) · Zbl 0958.65071
[20] Yauan, Y. X.: A review of trust region algorithms for optimization, ICM99: Proceedings of the fourth international congress on industrial and applied mathematics, 271-282 (2000) · Zbl 0992.65061
[21] Shi, Z. J.; Zhang, X. S.: From line search method to trust region method, Lect. notes oper. Res. 5, 156-170 (2005)
[22] D.C. Sorensen, Minimization of a large scale quadratic function subject to an ellipsoidal constraint, Technical Report TR94-27, Department of Computational and Applied Mathematics, Rice University, 1994.
[23] Branch, M. A.; Coleman, T. F.; Li, Y.: A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems, SIAM J. Sci. comput. 21, No. 1, 1-23 (1999) · Zbl 0940.65065 · doi:10.1137/S1064827595289108
[24] Byrd, R. H.; Schnabel, R. B.; Shultz, G. A.: Approximate solution of the trust region problem by minimization over two-dimensional subspaces, Math. program. 40, 247-263 (1988) · Zbl 0652.90082 · doi:10.1007/BF01580735
[25] Steihaug, T.: The conjugate gradient method and trust regions in large scale optimization, SIAM J. Numer. anal. 20, 626-637 (1983) · Zbl 0518.65042 · doi:10.1137/0720042
[26] More, J. J.; Sorensen, D. C.: Computing a trust region step, SIAM J. Sci. stat. Comput. 3, 553-572 (1983) · Zbl 0551.65042 · doi:10.1137/0904038
[27] J.B. Erway, P.E. Gill, J.D. Griffin, Iterative methods for finding a trust-region step, Numerical Analysis Report 07-2, Department of Mathematics, University of California, San Diego, La Jolla, CA, 2008. · Zbl 1189.49049
[28] Coleman, T. F.; Verma, A.: A preconditioned conjugate gradient approach to linear equality constrained minimization, Comput. optim. Appl. 20, 61-72 (2001) · Zbl 0983.90073 · doi:10.1023/A:1011271406353
[29] Friedlander, A.; Martinez, J. M.; Santos, S. A.: A new trust region algorithm for bound constrained minimization, Appl. math. Optim. 30, 235-266 (1994) · Zbl 0821.90101 · doi:10.1007/BF01183013
[30] Liang, X.; Xu, C.: A trust regional algorithm for bound constrained minimization, Optimization 41, No. 3, 279-289 (1997) · Zbl 0910.90247 · doi:10.1080/02331939708844340
[31] Holland, J. H.: Adaptation in natural and artificial systems, an introductory analysis with applications to biology, control, and artificial intelligence, (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.