zbMATH — the first resource for mathematics

Stochastic asymmetry properties of 3D Gauss-Lagrange ocean waves with directional spreading. (English) Zbl 1387.74061
Summary: In the stochastic Lagrange model for ocean waves the vertical and horizontal location of surface water particles are modeled as correlated Gaussian processes. We investigate the statistical properties of wave characteristics related to wave asymmetry in the 3D Lagrange model. We present a modification of the original Lagrange model that can produce front-back asymmetry both of the space waves, i.e. observation of the sea surface at a fixed time, and of the time waves, observed at a fixed measuring station. The results, which are based on a multivariate form of Rice’s formula for the expected number of level crossings, are given in the form of the cumulative distribution functions for the slopes observed either by asynchronous sampling in space, or at synchronous sampling at upcrossings and down-crossings, respectively, of a specified fixed level. The theory is illustrated in a numerical section, showing how the degree of wave asymmetry depends on the directional spectral spreading and on the mean wave direction. It is seen that the asymmetry is more accentuated for high waves, a fact that may be of importance in safety analysis of capsizing risk.

74J30 Nonlinear waves in solid mechanics
60G70 Extreme value theory; extremal stochastic processes
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
Full Text: DOI
[1] Aberg S., Advances in Applied Probability, 39 pp 1020– (2007) · Zbl 1142.60038 · doi:10.1239/aap/1198177237
[2] Aberg S., Probabilistic Engineering Mechanics 23 pp 359– (2008) · doi:10.1016/j.probengmech.2007.08.006
[3] Azaïs J.M., Level Sets and Extrema of Random Processes and Fields (2009) · Zbl 1168.60002 · doi:10.1002/9780470434642
[4] Bailey R.J., Journal of the Oceanographic Society of Japan 47 pp 249– (1991) · doi:10.1007/BF02310094
[5] Bolin , D. ; Lindgren , F. Spatial stochastic models generated by nested stochastic partial differential equations. Preprints in Mathematical Sciences, 2009, 14. Lund University. · Zbl 1235.60075
[6] Cox C., Journal of the Optical Society of America 44 pp 838– (1954) · doi:10.1364/JOSA.44.000838
[7] Cox C., Bulletin of the Scripps Institute of Oceanography 6 pp 401– (1956)
[8] Ebuchi N., Journal of Oceanography, 58 pp 477– (2002) · doi:10.1023/A:1021213331788
[9] Fouques S., Trans. of the ASME, Journal of Offshore Mechanics and Arctic Engineering 128 pp 177– (2006) · doi:10.1115/1.2199563
[10] Gjøsund S.H., Trans. of the ASME, Journal of Offshore Mechanics and Arctic Engineering 125 pp 94– (2003) · doi:10.1115/1.1554702
[11] Goda Y., Marine Technical Society Journal 33 pp 5– (1999) · doi:10.4031/MTSJ.33.3.2
[12] Holthuijsen L.H., Waves in Oceanic and Coastal Waters (2007) · doi:10.1017/CBO9780511618536
[13] Kinsman B., Wind Waves (1984)
[14] Lindgren G., Advance in Applied Probability 38 pp 430– (2006) · Zbl 1122.60050 · doi:10.1239/aap/1151337078
[15] Lindgren G., Applied Ocean Research 31 pp 65– (2009) · doi:10.1016/j.apor.2009.06.002
[16] Lindgren G., Advance Applied Probability 42 pp 489– (2010) · Zbl 1242.60035 · doi:10.1239/aap/1275055239
[17] Lindgren , G. ; Aberg , S. First order stochastic Lagrange models for front-back asymmetric ocean waves. Journal of Offshore Mechanics and Arctic Engineering,2008,131, 031602-1–031602-8.
[18] Lindgren G., Europen Physical Journal Special Topics 185 pp 209– (2010) · doi:10.1140/epjst/e2010-01250-y
[19] Longuet-Higgins M.S., Journal of Physical Oceanography 11 pp 1283– (1982) · doi:10.1175/1520-0485(1982)012<1283:OTSOSS>2.0.CO;2
[20] Miche M., Forme limit de la houle lors de son déferlement. Application aux digues marines. Annales des Ponts et Chassées, 114 pp 25– (1944) · Zbl 0063.03919
[21] Mitsuyasu H., Journal of Physical Oceanography 5 pp 750– (1975) · doi:10.1175/1520-0485(1975)005<0750:OOTDSO>2.0.CO;2
[22] Plant , W.J. A new interpretation of sea-surface slope probability density functions. Journal of Geophysical Research2003,108(C9), 3295, doi:10.1029/2003JC001870.
[23] Podgórski , K. ; Wegener , J. Non-Gaussian fields with vertical and horizontal asymmetries.Preprints in Mathematics Sciences, 2010. Lund University, ISSN 1403-9338, 1–54.
[24] Socquet-Juglard , H. ; Dysthe , K.B. ; Trulsen , K. ; Fouques , S. ; Liu , J. ; Krogstad , H. Spatial extremes, shape of large waves, and Lagrangian models. InProc. Rogue Waves, Brest, 2004. Available at http://www.ifremer.fr/web-com/stw2004/rw/fullpapers/krogstad.pdf
[25] Tayfun A., Journal of Waterways, Ports, Coastal, Ocean Engineering 132 pp 1– (2006) · doi:10.1061/(ASCE)0733-950X(2006)132:1(1)
[26] WAFO-Group.WAFO–a Matlab Toolbox for Analysis of Random Waves and Loads; Tutorial for WAFO Version 2.5, Math. Stat., Centre for Math. Sci., Lund Univ., Lund, Sweden, 2011. URL http://www.maths.lth.se/matstat/wafo
[27] Walsh E.J., Part III: Sea surface slope statistics and near-nadir remote sensing. Journal of Physical Oceanography 38 pp 670– (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.