×

Two-dimensional compact third-order polynomial reconstructions. Solving nonconservative hyperbolic systems using GPUs. (English) Zbl 1426.76366

Summary: We present a new kind of high-order reconstruction operator of polynomial type, which is used in combination with the scheme presented in [M. J. Castro et al., ibid. 39, No. 1, 67–114 (2009; Zbl 1203.65131)] for solving nonconservative hyperbolic systems. The implementation of the scheme is carried out on Graphics Processing Units (GPUs), thus achieving a substantial improvement of the speedup with respect to normal CPUs. As an application, the two-dimensional shallow water equations with geometrical source term due to the bottom slope is considered.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction

Citations:

Zbl 1203.65131

Software:

CUDA
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abgrall, R.: An essentially non-oscillatory reconstruction procedure on finite-element type meshes: Application to compressible flows. Comput. Methods Appl. Mech. Eng. 116, 95–101 (1994) · Zbl 0824.76052 · doi:10.1016/S0045-7825(94)80012-X
[2] Abgrall, R.: On essentially non-oscillatory schemes on unstructured meshes: Analysis and implementation. J. Comput. Phys. 114, 45–58 (1994) · Zbl 0822.65062 · doi:10.1006/jcph.1994.1148
[3] Castro, M.J., Gallardo, J.M., Parés, C.: High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow-water systems. Math. Comput. 75, 1103–1134 (2006) · Zbl 1096.65082 · doi:10.1090/S0025-5718-06-01851-5
[4] Castro, M.J., Fernández, E.D., Ferreiro, A.M., García, A., Parés, C.: High order extension of Roe schemes for two dimensional nonconservative hyperbolic systems. J. Sci. Comput. 39, 67–114 (2009) · Zbl 1203.65131 · doi:10.1007/s10915-008-9250-4
[5] Dumbser, M., Käser, M.: Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems. J. Comput. Phys. 221, 693–723 (2007) · Zbl 1110.65077 · doi:10.1016/j.jcp.2006.06.043
[6] Friedrich, O.: Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids. J. Comput. Phys. 144, 194–212 (1998) · Zbl 1392.76048 · doi:10.1006/jcph.1998.5988
[7] Gallardo, J.M., Parés, C., Castro, M.: On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas. J. Comput. Phys. 227, 574–601 (2007) · Zbl 1126.76036 · doi:10.1016/j.jcp.2007.08.007
[8] Hagen, T.R., Hjelmervik, J.M., Lie, K.A., Natvig, J.R., Ofstad, M.: Visual simulation of shallow-water waves. Simul. Model. Pract. Theory 13, 716–726 (2005) · doi:10.1016/j.simpat.2005.08.006
[9] Harten, A., Hyman, J.M.: Self-adjusting grid methods for one-dimensional hyperbolic conservation laws. J. Comput. Phys. 50, 235–269 (1983) · Zbl 0565.65049 · doi:10.1016/0021-9991(83)90066-9
[10] Hu, C., Shu, C.-W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150, 97–127 (1999) · Zbl 0926.65090 · doi:10.1006/jcph.1998.6165
[11] Jiang, G., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996) · Zbl 0877.65065 · doi:10.1006/jcph.1996.0130
[12] Lastra, M., Mantas, J.M., Ureña, C., Castro, M.J., García, J.A.: Simulation of shallow-water systems using graphics processing units. Math. Comput. Simul. 80, 598–618 (2009) · Zbl 1423.76302 · doi:10.1016/j.matcom.2009.09.012
[13] Liu, X.D., Osher, S., Chan, T.: Weighted essentially nonoscillatory schemes. J. Comput. Phys. 115, 200–212 (1994) · Zbl 0811.65076 · doi:10.1006/jcph.1994.1187
[14] de la Asunción, M., Mantas, J.M., Castro, M.J.: Simulation of one-layer shallow water systems on multicore and CUDA architectures. J. Supercomput. (2009). doi: 10.1007/s11227-010-0406-2
[15] Marquina, A.: Local piecewise hyperbolic reconstructions for nonlinear scalar conservation laws. SIAM J. Sci. Comput. 15, 892–915 (1994) · Zbl 0805.65088 · doi:10.1137/0915054
[16] Noelle, S., Pankratz, N., Puppo, G., Natvig, J.: Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows. J. Comput. Phys. 213, 474–499 (2006) · Zbl 1088.76037 · doi:10.1016/j.jcp.2005.08.019
[17] http://www.nvidia.com
[18] NVIDIA. CUDA Zone. http://www.nvidia.com/object/cuda_home.html . Accessed November 2009
[19] Parés, C.: Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J. Numer. Anal. 44, 300–321 (2006) · Zbl 1130.65089 · doi:10.1137/050628052
[20] Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E., Purcell, T.: A Survey of General-Purpose Computation on Graphics Hardware, Eurographics 2005 State of the Art Report (2005)
[21] Rumpf, M., Strzodka, R.: Graphics processor units: new prospects for parallel computing. Lect. Notes Comput. Sci. Eng. 51, 89–121 (2006) · Zbl 1112.68343
[22] Schroll, H.J., Svensson, F.: A bi-hyperbolic finite volume method on quadrilateral meshes. J. Sci. Comput. 26, 237–260 (2006) · Zbl 1203.76096 · doi:10.1007/s10915-004-4927-9
[23] Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. ICASE Report n. 97–65 (1997)
[24] Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77, 439–71 (1998) · Zbl 0653.65072 · doi:10.1016/0021-9991(88)90177-5
[25] Walz, G.: Romberg type cubature over arbitrary triangles. Mannheimer Mathem. Manuskripte Nr. 225, Mannhein (1997) · Zbl 0906.68167
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.