×

zbMATH — the first resource for mathematics

Construction of optimal cubature formulas related to computer tomography. (English) Zbl 1231.65054
Summary: We study the problem of the optimization of approximate integration on the class of functions defined on the parallelepiped \(\Pi _{ d }=[0,a _{1}]\times \cdot \cdot \cdot \times [0,a _{ d }], a _{1},\cdots ,a _{ d }\)>0, having a given majorant for the modulus of continuity (relative to the \(l _{1}\)-metric in \(\mathbb R^{ d }\)). An optimal cubature formula, which uses as information integrals of \(f\) along intersections of \(\Pi _{ d }\) with \(n\) arbitrary \((d - 1)\)-dimensional hyperplanes in \(\mathbb R^{ d } (d>1)\) is obtained. We also find an asymptotically optimal sequence of cubature formulas, whose information functionals are integrals of \(f\) along intersections of \(\Pi _{ d }\) with shifts of \((d - 2)\)-dimensional coordinate subspaces of \(\mathbb R^{ d } (d>2)\).

MSC:
65D30 Numerical integration
65D32 Numerical quadrature and cubature formulas
41A55 Approximate quadratures
41A63 Multidimensional problems
PDF BibTeX Cite
Full Text: DOI
References:
[1] Babenko, V.F.: Asymptotically exact estimate of the remainder of the best cubature formulae for certain classes of functions. Mat. Zametki 19(3), 313–322 (1976) (in Russian); Math Notes 19, 187–193 (1976)
[2] Babenko, V.F.: Exact asymptotic estimates of the remainders of weighted cubature formulas that are optimal for certain classes of functions. Mat. Zametki 20(4), 589–595 (1976) (in Russian)
[3] Babenko, V.F.: On the optimal error bound for cubature formulae on certain classes of continuous functions. Anal. Math. 3, 3–9 (1977) · Zbl 0372.41020
[4] Babenko, V.F.: On a certain problem of optimal integration. In: Studies on Contemporary Problems of Integration and Approximations of Functions and Their Applications. Collection of Research Papers, pp. 3–13. Dnepropetrovsk State University, Dnepropetrovsk (1984) (in Russian)
[5] Babenko, V.F.: Approximations, widths and optimal quadrature formulae for classes of periodic functions with rearrangement invariant sets of derivatives. Anal. Math. 13(4), 281–306 (1987) · Zbl 0652.41008
[6] Babenko, V.F., Borodachov, S.V.: On optimization of cubature formulae for the classes of monotone functions of several variables. Vestn. Dnepr. Univ. Math. 7, 3–7 (2002) (in Russian)
[7] Babenko, V.F., Borodachov, S.V.: On optimization of approximate integration over a d-dimensional ball. East J. Approx. 9(1), 95–109 (2003) · Zbl 1111.41021
[8] Babenko, V.F., Borodachov, S.V.: On the construction of optimal cubature formulae which use integrals over hyperspheres. J. Complex. 23(3), 346–358 (2007) · Zbl 1114.41019
[9] Babenko, V.F., Borodachov, S.V., Skorokhodov, D.S.: Optimal cubature formulae on certain classes of functions defined on a unit cube. Numer. Math. (to appear) · Zbl 1262.41018
[10] Babenko, V.F., Skorokhodov, D.S.: On the best interval quadrature formulae for classes of differentiable periodic functions. J. Complex. 23(4–6), 890–917 (2007) · Zbl 1147.41008
[11] Benedetto, J.J., Zayed, A.I. (eds.): Sampling, Wavelets, and Tomography. Birkhäuser, Basel (2004) · Zbl 1047.94001
[12] Bojanov, B.D.: An extension of the Pizzetti formula for polyharmonic functions. Acta Math. Hung. 91(1–2), 99–113 (2001) · Zbl 0980.31004
[13] Bojanov, B.D.: Cubature formulae for polyharmonic functions, Recent progress in multivariate approximation. In: Internat. Ser. Numer. Math., Witten-Bommerholz, 2000, vol. 137, pp. 49–74. Birkhäuser, Basel (2001) · Zbl 0988.41017
[14] Bojanov, B., Petrova, G.: Uniqueness of the Gaussian quadrature for a ball. J. Approx. Theory 104, 21–44 (2000) · Zbl 0979.41020
[15] Bojanov, B.D., Dimitrov, D.K.: Gaussian extended cubature formulae for polyharmonic functions. Math. Comput. 70(234), 671–683 (2001) · Zbl 0965.31007
[16] Bojanov, B.D.: Optimal quadrature formulas. Usp. Mat. Nauk 60(6(366)), 33–52 (2005) (in Russian); translation in Russ. Math. Surv. 60(6), 1035–1055 (2005)
[17] Bojanov, B., Petrov, P.: Gaussian interval quadrature formulae for Tchebycheff systems. SIAM J. Numer. Anal. 43(2), 787–795 (2005) · Zbl 1088.41016
[18] Bojanov, B.: Interpolation and integration based on averaged values. Approx. Pobab. Banach Cent. Publ. 72, 25–47 (2006) · Zbl 1116.41003
[19] Borodachov, S.V.: On optimization of interval quadrature formulae for certain non-symmetric classes of periodic functions. Vestn. Dnepr. Univ. Math. 4, 19–24 (1999) (in Russian)
[20] Chernaya, E.V.: On the optimization of weighed cubature formulae on certain classes of continuous functions. East J. Approx. 1(1), 47–60 (1995)
[21] Dimitrov, D.K.: Integration of polyharmonic functions. Math. Comput. 65, 1269–1281 (1996) · Zbl 0860.31003
[22] Fejes-Toth, L.: Lagerungen in der Ebene, auf der Kugel und im Raum, 1st edn. Springer, Berlin–Gottingen–Heidelberg (1953) (German); 2nd edn. Springer, Berlin (1972) · Zbl 0052.18401
[23] Gruber, P.M.: Optimum quantization and its applications. Adv. Math. 186, 456–497 (2004) · Zbl 1062.94012
[24] Kantorovich, L.V.: On special methods of numerical integration of even and odd functions. Proc. Steklov Math. Inst. Akad. Nauk. USSR 28, 3–25 (1949) · Zbl 0039.12504
[25] Korneichuk, N.P.: Best cubature formulae for certain classes of functions of several variables. Mat. Zametki 3(5), 565–576 (1968) (in Russian). English transl.: Math. Notes 3, 360–367 (1968)
[26] Ligun, A.A.: Best quadrature formulas for some classes of periodic functions. Mat. Zametki 24(5), 661–669 (1978) (in Russian)
[27] Lusternik, L.A.: Certain cubature formulas for double integrals. Dokl. Akad. Nauk SSSR 62(4), 449–452 (1948)
[28] Motornyi, V.P.: On the best quadrature formula of the form $\(\backslash\)sum_{k=1}\^{n}{p_{k}f(x_{k})}$ for some classes of differentiable periodic functions. Izv. Akad. Nauk SSSR, Ser. Mat. 38(3), 583–614 (1974) (in Russian). English transl.: Math. USSR Izv. 8(3), 591–620 (1974)
[29] Motornyi, V.P.: On the best interval quadrature formula in the class of functions with bounded r-th derivative. East J. Approx. 4(4), 459–478 (1998)
[30] Motornyi, V.P.: Investigations of Dnepropetrovsk mathematicians on the optimization of quadrature formulas. Ukr. Math. J. 42(1), 13–27 (1990) · Zbl 0715.41044
[31] Mysovskih, I.P.: Interpolatory Cubature Formulae, 1st edn. Nauka, Moscow (1981) (Russian)
[32] Natterer, F.: The Mathematics of Computerized Tomography. Teubner/Wiley, Stuttgart/Chichester (1986), x+222 pp. · Zbl 0617.92001
[33] Nikol’skiy, S.M.: Quadrature Formulae, 4th edn. Nauka, Moscow (1988) (in Russian)
[34] Nikol’skiy, S.M.: To the question on estimates of approximation by quadrature formulae. Usp. Mat. Nauk 5(2(36)), 165–177 (1950) (in Russian)
[35] Petrova, G.: Uniqueness of the Gaussian extended cubature for polyharmonic functions. East J. Approx. 9(3), 269–275 (2003) · Zbl 1111.41023
[36] Petrova, G.: Cubature formulae for spheres, simplices and balls. J. Comput. Appl. Math. 162(2), 483–496 (2004) · Zbl 1046.41015
[37] Traub, J.F., Wozniakowski, H.: A General Theory of Optimal Algorithms. Academic Press, San Diego (1980) · Zbl 0441.68046
[38] Žensykbaev, A.A.: The best quadrature formula for some classes of periodic differentiable functions. Izv. Akad. Nauk SSSR Ser. Mat. 41(5), 1110–1124 (1977) (in Russian)
[39] Žensykbaev, A.A.: Monosplines of minimal norm and optimal quadrature formulas. Usp. Mat. Nauk 36(4(220)), 107–159 (1981) (in Russian)
[40] Žensykbaev, A.A.: Problems of Recovery of Operators. Institute of Computer Research, Moscow–Izhevsk (2003), 412 pp. (in Russian) (ISBN: 5-93972-268-7)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.