×

Effective density of states for a quantum oscillator coupled to a photon field. (English) Zbl 1208.81243

Summary: We give an explicit formula for the effective partition function of a harmonically bound particle minimally coupled to a photon field in the dipole approximation. The effective partition function is shown to be the Laplace transform of a positive Borel measure, the effective measure of states. The absolutely continuous part of the latter allows for an analytic continuation, the singularities of which give rise to resonances. We give the precise location of these singularities, and show that they are well approximated by first order poles with residues equal to the multiplicities of the corresponding eigenspaces of the uncoupled quantum oscillator. Thus we obtain a complete analytic description of the natural line spectrum of the charged oscillator.

MSC:

81V80 Quantum optics
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bach V., Fröhlich J., Sigal I.M.: Quantum Electrodynamics of Confined Nonrelativistic Particles. Adv. in Math. 137, 299–395 (1998) · Zbl 0923.47040 · doi:10.1006/aima.1998.1734
[2] Bach V., Fröhlich J., Sigal I.M.: Return to Equilibrium. J. Math. Phys. 41, 3985–4060 (2000) · Zbl 1037.82029 · doi:10.1063/1.533334
[3] Betz V., Hiroshima F., Lorinczi J., Minlos R.A., Spohn H.: Ground state properties of the Nelson Hamiltonian - A Gibbs measure-based approach. Rev. Math. Phys. 14, 173–198 (2002) · Zbl 1029.81022 · doi:10.1142/S0129055X02001119
[4] Castrigiano D.P.L., Kokiantonis N.: Quantum oscillator in a non-self-interacting radiation field: Exact calculation of the partition function. Phys. Rev. A 35(10), 4122–4128 (1987) · doi:10.1103/PhysRevA.35.4122
[5] Castrigiano D.P.L., Kokiantonis N., Stiersdorfer H.: Natural Spectrum of a Charged Quantum Oscillator. Il Nuovo Cimento 108(7), 765–777 (1993) · doi:10.1007/BF02741874
[6] Cohen-Tannoudji C., Dupont-Roc J., Grynberg G.: Photons and Atoms. John Wiley, New York (1987)
[7] Cohen-Tannoudji C., Dupont-Roc J., Grynberg G.: Atom-Photon Interactions. John Wiley, New York (1998)
[8] Feynman R.P.: Statistical Mechanics. Benjamin, Reading, MA (1972)
[9] Griesemer M., Lieb E., Loss M.: Ground states in non-relativistic quantum electrodynamics. Invent. Math. 145(3), 557–595 (2001) · Zbl 1044.81133 · doi:10.1007/s002220100159
[10] Hiroshima F., Spohn H.: Enhanced binding through coupling to a quantum field. Ann. Henri Poincaré 2, 1159–1187 (2001) · Zbl 1020.81049 · doi:10.1007/s00023-001-8606-1
[11] Hunziker W.: Resonances, Metastable States and Exponential Decay Laws in Perturbation Theory. Commun. Math. Phys. 132, 177–188 (1990) · Zbl 0721.35047 · doi:10.1007/BF02278006
[12] Kirsch W., Metzger B.: The integrated density of states for random Schrödinger operators. Proc. Symp. in Pure Math. 76(2), 649 (2007) · Zbl 1208.82028
[13] Louisell, W.H.: Quantum Statistical Properties of Radiation. New York: John Wiley, 1973, Chap. 5, and D. Marcuse: Principles of Quantum Electronics, London-New York: Academic Press, 1980, Chap. 5 · Zbl 1049.81683
[14] Merkli M., Sigal I.M., Berman G.P.: Decoherence and thermalization. Phys. Rev. Lett. 98, 130401 (2007) · Zbl 1228.82060 · doi:10.1103/PhysRevLett.98.130401
[15] Merkli M., Sigal I.M., Berman G.P.: Resonance theory of decoherence and thermalization. Ann. Phys. 323, 373–412 (2009) · Zbl 1201.81083
[16] Reed M., Simon B.: Methods of Modern Mathematical Physics IV: Analysis of Operators. Academic Press, New York (1978) · Zbl 0401.47001
[17] Simon B.: Functional Integration and Quantum Physics. Academic Press, New York (1979) · Zbl 0434.28013
[18] Spohn H.: Dynamics of charged particles and their radiation fields. Cambridge University Press, Cambridge (2004) · Zbl 1078.81004
[19] Weidmann J.: Linear Operators in Hilbert Spaces. Springer, Berlin-Heidelberg-New York (1980) · Zbl 0434.47001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.