×

Inverse estimation of temperature boundary conditions with irregular shape of gas tank. (English) Zbl 1197.80040

Summary: To broaden the application of inverse estimation, the purpose of this study is to estimate the unknown temperature boundary condition of the complex or irregular shape, like the high pressure gas tank. An inverse algorithm based on the sequential method and the concept of future time combined with the finite-element method is proposed to solve the two dimensional irregular shape heat conduction problems. Special features about the proposed method are that the stiffness matrix of the irregular shape can be solved from the finite-element method and used by the inverse algorithm. The estimated results are quite accurate with the consideration of future time in the different measured errors, the various sensor’s number and the sensor location. These results show that the proposed method is an accurate, sturdy, and efficient method for solving several realistic applications.

MSC:

80A23 Inverse problems in thermodynamics and heat transfer
80M10 Finite element, Galerkin and related methods applied to problems in thermodynamics and heat transfer
80A20 Heat and mass transfer, heat flow (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alifanov, O. M.: Inverse heat transfer problems, (1994) · Zbl 0979.80003
[2] Beck, J. V.; Blackwell, B.; Clair, C. R. St.: Inverse heat conduction-ill posed problem, (1985) · Zbl 0633.73120
[3] Ozisik, M. N.; Orlande, H. R. B.: Inverse heat transfer, (2000)
[4] Kurpisz, K.; Nowak, A. J.: Inverse thermal problems, (1995) · Zbl 0833.65106
[5] Dong, C. F.; Sun, F. Y.; Meng, B. Q.: A method of fundamental solutions for inverse heat conduction problems in an anisotropic medium, Eng. anal. Bound. elem. 31, 75-82 (2007) · Zbl 1195.80036 · doi:10.1016/j.enganabound.2006.04.007
[6] Kim, S. K.; Jung, B. S.; Lee, W. I.: An inverse estimation of surface temperature using the maximum entropy method, Int. commun. Heat mass transfer 34, 37-44 (2007)
[7] Chen, T. C.; Liu, C. C.; Jang, H. Y.; Tuan, P. C.: Inverse estimation of heat flux and temperature in multi-layer gun barrel, Int. J. Heat mass transfer 50, 2060-2068 (2007) · Zbl 1124.80396 · doi:10.1016/j.ijheatmasstransfer.2006.11.022
[8] Carvalho, S. R.; Silva, S. M. M. Lima E.; Machado, A. R.; Guimaraes, G.: Temperature determination at the chip – tool interface using an inverse thermal model considering the tool and tool holder, J. mater. Process. technol. 179, 97-104 (2006)
[9] Chen, C. K.; Wu, L. W.; Yang, Y. T.: Comparison of whole-domain and sequential algorithms for function specification method in the inverse heat transfer problem of laminar convective pipe flow, Numer. heat transfer, part A 50, 927-947 (2006)
[10] Cabeza, J. M. G.; Garcı&acute, J. A. M.; A; Rodrı&acute, A. C.; Guez: A sequential algorithm of inverse heat conduction problems using singular value decomposition, Int. J. Therm. sci. 44, 235-244 (2005)
[11] Gao, X. W.; He, M. C.: A new inverse analysis approach for multi-region heat conduction BEM using complex-variable-differentiation method, Eng. anal. Bound. elem. 29, 788-795 (2005) · Zbl 1182.80014 · doi:10.1016/j.enganabound.2005.03.001
[12] Kim, S. K.: Resolving the final time singularity in gradient methods for inverse heat conduction problems, Numer. heat transfer, part B: fundamentals 57, 74-88 (2010)
[13] Hong, Y. K.; Baek, S. W.; Kim, M. Y.: Inverse natural convection problem with radiation in rectangular enclosure, Numer. heat transfer, part A: appl. 57, 315-330 (2010)
[14] Volle, F.; Maillet, D.; Gradeck, M.; Kouachi, A.; Lebouche, M.: Practical application of inverse heat conduction for wall condition estimation on a rotating cylinder, Int. J. Heat mass transfer 52, 210-221 (2009) · Zbl 1156.80400 · doi:10.1016/j.ijheatmasstransfer.2008.05.025
[15] Kowsary, F.; Nazari, M.: Analysis of thermal nonequilibrium inverse heat transfer in a porous channel, Numer. heat transfer, part A: appl. 57, 54-68 (2010)
[16] Yang, C. Y.: Noniterative solution of inverse heat conduction problems in one dimension, Commun. numer. Method eng. 13, 419-427 (1997) · Zbl 0884.65095 · doi:10.1002/(SICI)1099-0887(199706)13:6<419::AID-CNM63>3.0.CO;2-S
[17] Carnahan, B.; Luther, H. A.; Wilkes, J. O.: Applied numerical methods, (1977) · Zbl 0195.44701
[18] Celia, M. A.; Gray, W. G.: Numerical methods for differential equations, (1992) · Zbl 0753.65073
[19] Hsu, T. R.; Sun, N. S.; Chen, G. G.; Gong, Z. L.: Finite element formulation for two-dimensional inverse heat conduction analysis, J. heat transfer 114, 553-557 (1992)
[20] Noor, A. K.; Andersen, C. M.: Computerized symbolic manipulation in structural mechanics of progress and potential, Comput. struct. 10, 95-118 (1979) · Zbl 0394.73004 · doi:10.1016/0045-7949(79)90077-4
[21] Strang, G.: Linear algebra and its application, (1980) · Zbl 0548.15004
[22] User’s Manual, Math Library Version 1.0, IMSL Library Edition 10.0, IMSL, Houston, TX, 1987.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.