Kiryakova, V. The multi-index Mittag-Leffler functions as an important class of special functions of fractional calculus. (English) Zbl 1189.33034 Comput. Math. Appl. 59, No. 5, 1885-1895 (2010). MSC: 33E10 26A33 33-02 PDF BibTeX XML Cite \textit{V. Kiryakova}, Comput. Math. Appl. 59, No. 5, 1885--1895 (2010; Zbl 1189.33034) Full Text: DOI
El-Khazali, Reyad; Shariff, M. H. B. M. Double-delay fractional and integer-order tanlock loops. (English) Zbl 1189.94029 Comput. Math. Appl. 59, No. 5, 1874-1884 (2010). MSC: 94A12 93E11 PDF BibTeX XML Cite \textit{R. El-Khazali} and \textit{M. H. B. M. Shariff}, Comput. Math. Appl. 59, No. 5, 1874--1884 (2010; Zbl 1189.94029) Full Text: DOI
Kadem, Abdelouhab; Baleanu, Dumitru Fractional radiative transfer equation within Chebyshev spectral approach. (English) Zbl 1189.35359 Comput. Math. Appl. 59, No. 5, 1865-1873 (2010). MSC: 35R11 26A33 76R50 PDF BibTeX XML Cite \textit{A. Kadem} and \textit{D. Baleanu}, Comput. Math. Appl. 59, No. 5, 1865--1873 (2010; Zbl 1189.35359) Full Text: DOI
Agrawal, Om Prakash Generalized variational problems and Euler-Lagrange equations. (English) Zbl 1189.49029 Comput. Math. Appl. 59, No. 5, 1852-1864 (2010). MSC: 49K10 26A33 PDF BibTeX XML Cite \textit{O. P. Agrawal}, Comput. Math. Appl. 59, No. 5, 1852--1864 (2010; Zbl 1189.49029) Full Text: DOI
Rachid, Mansouri; Maamar, Bettayeb; Said, Djennoune Multivariable fractional system approximation with initial conditions using integral state space representation. (English) Zbl 1189.93032 Comput. Math. Appl. 59, No. 5, 1842-1851 (2010). MSC: 93B15 26A33 34A08 PDF BibTeX XML Cite \textit{M. Rachid} et al., Comput. Math. Appl. 59, No. 5, 1842--1851 (2010; Zbl 1189.93032) Full Text: DOI
Băleanu, Dumitru; Mustafa, Octavian G. On the global existence of solutions to a class of fractional differential equations. (English) Zbl 1189.34006 Comput. Math. Appl. 59, No. 5, 1835-1841 (2010). MSC: 34A08 26A33 PDF BibTeX XML Cite \textit{D. Băleanu} and \textit{O. G. Mustafa}, Comput. Math. Appl. 59, No. 5, 1835--1841 (2010; Zbl 1189.34006) Full Text: DOI
Rivero, Margarita; Rodríguez-Germá, Luis; Trujillo, Juan J.; Pilar Velasco, M. Fractional operators and some special functions. (English) Zbl 1189.31005 Comput. Math. Appl. 59, No. 5, 1822-1834 (2010). MSC: 31B10 26A33 PDF BibTeX XML Cite \textit{M. Rivero} et al., Comput. Math. Appl. 59, No. 5, 1822--1834 (2010; Zbl 1189.31005) Full Text: DOI
Li, Yan; Chen, Yangquan; Podlubny, Igor Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. (English) Zbl 1189.34015 Comput. Math. Appl. 59, No. 5, 1810-1821 (2010). MSC: 34A08 26A33 34D20 37C75 PDF BibTeX XML Cite \textit{Y. Li} et al., Comput. Math. Appl. 59, No. 5, 1810--1821 (2010; Zbl 1189.34015) Full Text: DOI
Daftardar-Gejji, Varsha; Bhalekar, Sachin Solving fractional boundary value problems with Dirichlet boundary conditions using a new iterative method. (English) Zbl 1189.35357 Comput. Math. Appl. 59, No. 5, 1801-1809 (2010). MSC: 35R11 26A33 PDF BibTeX XML Cite \textit{V. Daftardar-Gejji} and \textit{S. Bhalekar}, Comput. Math. Appl. 59, No. 5, 1801--1809 (2010; Zbl 1189.35357) Full Text: DOI
Kilbas, Anatoly A.; Rodríguez-Germá, Luis; Saigo, Megumi; Saxena, R. K.; Trujillo, J. J. The Krätzel function and evaluation of integrals. (English) Zbl 1189.33037 Comput. Math. Appl. 59, No. 5, 1790-1800 (2010). MSC: 33E20 33B10 33C60 PDF BibTeX XML Cite \textit{A. A. Kilbas} et al., Comput. Math. Appl. 59, No. 5, 1790--1800 (2010; Zbl 1189.33037) Full Text: DOI
Ortigueira, Manuel D.; Coito, Fernando J. System initial conditions vs derivative initial conditions. (English) Zbl 1189.34018 Comput. Math. Appl. 59, No. 5, 1782-1789 (2010). MSC: 34A08 26A33 PDF BibTeX XML Cite \textit{M. D. Ortigueira} and \textit{F. J. Coito}, Comput. Math. Appl. 59, No. 5, 1782--1789 (2010; Zbl 1189.34018) Full Text: DOI
Adams, Jay L.; Hartley, Tom T.; Veillette, Robert J. Hankel-norm estimation for fractional-order systems using the Rayleigh-Ritz method. (English) Zbl 1189.65066 Comput. Math. Appl. 59, No. 5, 1773-1781 (2010). MSC: 65F15 15A18 26A33 PDF BibTeX XML Cite \textit{J. L. Adams} et al., Comput. Math. Appl. 59, No. 5, 1773--1781 (2010; Zbl 1189.65066) Full Text: DOI
Luchko, Yury Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation. (English) Zbl 1189.35360 Comput. Math. Appl. 59, No. 5, 1766-1772 (2010). MSC: 35R11 26A33 35A01 35A02 PDF BibTeX XML Cite \textit{Y. Luchko}, Comput. Math. Appl. 59, No. 5, 1766--1772 (2010; Zbl 1189.35360) Full Text: DOI
El-Sayed, A. M. A.; Behiry, S. H.; Raslan, W. E. Adomian’s decomposition method for solving an intermediate fractional advection-dispersion equation. (English) Zbl 1189.35358 Comput. Math. Appl. 59, No. 5, 1759-1765 (2010). MSC: 35R11 26A33 PDF BibTeX XML Cite \textit{A. M. A. El-Sayed} et al., Comput. Math. Appl. 59, No. 5, 1759--1765 (2010; Zbl 1189.35358) Full Text: DOI
Chen, Wen; Sun, Hongguang; Zhang, Xiaodi; Korošak, Dean Anomalous diffusion modeling by fractal and fractional derivatives. (English) Zbl 1189.35355 Comput. Math. Appl. 59, No. 5, 1754-1758 (2010). MSC: 35R11 26A33 35A08 PDF BibTeX XML Cite \textit{W. Chen} et al., Comput. Math. Appl. 59, No. 5, 1754--1758 (2010; Zbl 1189.35355) Full Text: DOI
Deü, J.-F.; Matignon, D. Simulation of fractionally damped mechanical systems by means of a Newmark-diffusive scheme. (English) Zbl 1189.65137 Comput. Math. Appl. 59, No. 5, 1745-1753 (2010). MSC: 65L05 26A33 34A08 PDF BibTeX XML Cite \textit{J. F. Deü} and \textit{D. Matignon}, Comput. Math. Appl. 59, No. 5, 1745--1753 (2010; Zbl 1189.65137) Full Text: DOI
Rossikhin, Yu. A.; Shitikova, M. V.; Shcheglova, T. A. Analysis of free vibrations of a viscoelastic oscillator via the models involving several fractional parameters and relaxation/retardation times. (English) Zbl 1189.44001 Comput. Math. Appl. 59, No. 5, 1727-1744 (2010). MSC: 44A05 26A33 PDF BibTeX XML Cite \textit{Yu. A. Rossikhin} et al., Comput. Math. Appl. 59, No. 5, 1727--1744 (2010; Zbl 1189.44001) Full Text: DOI
Zheng, Yunying; Li, Changpin; Zhao, Zhengang A note on the finite element method for the space-fractional advection diffusion equation. (English) Zbl 1189.65288 Comput. Math. Appl. 59, No. 5, 1718-1726 (2010). MSC: 65N30 26A33 35R11 PDF BibTeX XML Cite \textit{Y. Zheng} et al., Comput. Math. Appl. 59, No. 5, 1718--1726 (2010; Zbl 1189.65288) Full Text: DOI
Klimek, Malgorzata On analogues of exponential functions for antisymmetric fractional derivatives. (English) Zbl 1189.34012 Comput. Math. Appl. 59, No. 5, 1709-1717 (2010). MSC: 34A08 26A33 33C90 PDF BibTeX XML Cite \textit{M. Klimek}, Comput. Math. Appl. 59, No. 5, 1709--1717 (2010; Zbl 1189.34012) Full Text: DOI
Dinç, Erdal; Baleanu, Dumitru Fractional wavelet transform for the quantitative spectral resolution of the composite signals of the active compounds in a two-component mixture. (English) Zbl 1189.94028 Comput. Math. Appl. 59, No. 5, 1701-1708 (2010). MSC: 94A11 PDF BibTeX XML Cite \textit{E. Dinç} and \textit{D. Baleanu}, Comput. Math. Appl. 59, No. 5, 1701--1708 (2010; Zbl 1189.94028) Full Text: DOI
Grahovac, N. M.; žigić, M. M. Modelling of the hamstring muscle group by use of fractional derivatives. (English) Zbl 1189.35341 Comput. Math. Appl. 59, No. 5, 1695-1700 (2010). MSC: 35Q92 74D10 92C30 26A33 PDF BibTeX XML Cite \textit{N. M. Grahovac} and \textit{M. M. žigić}, Comput. Math. Appl. 59, No. 5, 1695--1700 (2010; Zbl 1189.35341) Full Text: DOI
Jesus, Isabel S.; Tenreiro Machado, J. A.; Barbosa, Ramiro S. Control of a heat diffusion system through a fractional order nonlinear algorithm. (English) Zbl 1189.93047 Comput. Math. Appl. 59, No. 5, 1687-1694 (2010). MSC: 93B50 26A33 PDF BibTeX XML Cite \textit{I. S. Jesus} et al., Comput. Math. Appl. 59, No. 5, 1687--1694 (2010; Zbl 1189.93047) Full Text: DOI
Barbosa, Ramiro S.; Tenreiro Machado, J. A.; Jesus, Isabel S. Effect of fractional orders in the velocity control of a servo system. (English) Zbl 1189.93044 Comput. Math. Appl. 59, No. 5, 1679-1686 (2010). MSC: 93B50 26A33 PDF BibTeX XML Cite \textit{R. S. Barbosa} et al., Comput. Math. Appl. 59, No. 5, 1679--1686 (2010; Zbl 1189.93044) Full Text: DOI
Victor, Stéphane; Melchior, Pierre; Oustaloup, Alain Robust path tracking using flatness for fractional linear MIMO systems: a thermal application. (English) Zbl 1189.93049 Comput. Math. Appl. 59, No. 5, 1667-1678 (2010). MSC: 93B50 26A33 93B51 PDF BibTeX XML Cite \textit{S. Victor} et al., Comput. Math. Appl. 59, No. 5, 1667--1678 (2010; Zbl 1189.93049) Full Text: DOI
Castillo, Fernando J.; Feliu, V.; Rivas, R.; Sánchez, Luis Design of a class of fractional controllers from frequency specifications with guaranteed time domain behavior. (English) Zbl 1189.93045 Comput. Math. Appl. 59, No. 5, 1656-1666 (2010). MSC: 93B50 PDF BibTeX XML Cite \textit{F. J. Castillo} et al., Comput. Math. Appl. 59, No. 5, 1656--1666 (2010; Zbl 1189.93045) Full Text: DOI
Tricaud, Christophe; Chen, Yangquan An approximate method for numerically solving fractional order optimal control problems of general form. (English) Zbl 1189.49045 Comput. Math. Appl. 59, No. 5, 1644-1655 (2010). MSC: 49M25 26A33 PDF BibTeX XML Cite \textit{C. Tricaud} and \textit{Y. Chen}, Comput. Math. Appl. 59, No. 5, 1644--1655 (2010; Zbl 1189.49045) Full Text: DOI
Hosseinnia, S. H.; Ghaderi, R.; Ranjbar N., A.; Mahmoudian, M.; Momani, S. Sliding mode synchronization of an uncertain fractional order chaotic system. (English) Zbl 1189.34011 Comput. Math. Appl. 59, No. 5, 1637-1643 (2010). MSC: 34A08 26A33 93B52 37N35 34D06 37D45 PDF BibTeX XML Cite \textit{S. H. Hosseinnia} et al., Comput. Math. Appl. 59, No. 5, 1637--1643 (2010; Zbl 1189.34011) Full Text: DOI
Defterli, Ozlem A numerical scheme for two-dimensional optimal control problems with memory effect. (English) Zbl 1189.49044 Comput. Math. Appl. 59, No. 5, 1630-1636 (2010); corrigendum 59, No. 8, 3028 (2010). MSC: 49M25 26A33 PDF BibTeX XML Cite \textit{O. Defterli}, Comput. Math. Appl. 59, No. 5, 1630--1636 (2010; Zbl 1189.49044) Full Text: DOI
Hamamci, Serdar Ethem; Koksal, Muhammet Calculation of all stabilizing fractional-order PD controllers for integrating time delay systems. (English) Zbl 1189.93125 Comput. Math. Appl. 59, No. 5, 1621-1629 (2010). MSC: 93D15 93B51 PDF BibTeX XML Cite \textit{S. E. Hamamci} and \textit{M. Koksal}, Comput. Math. Appl. 59, No. 5, 1621--1629 (2010; Zbl 1189.93125) Full Text: DOI
Chen, Wen; Ye, Linjuan; Sun, Hongguang Fractional diffusion equations by the Kansa method. (English) Zbl 1189.35356 Comput. Math. Appl. 59, No. 5, 1614-1620 (2010). MSC: 35R11 26A33 PDF BibTeX XML Cite \textit{W. Chen} et al., Comput. Math. Appl. 59, No. 5, 1614--1620 (2010; Zbl 1189.35356) Full Text: DOI
Le Méhauté, A.; El Kaabouchi, A.; Nivanen, L. Riemann’s conjecture and a fractional derivative. (English) Zbl 1189.11042 Comput. Math. Appl. 59, No. 5, 1610-1613 (2010). MSC: 11M26 26A33 PDF BibTeX XML Cite \textit{A. Le Méhauté} et al., Comput. Math. Appl. 59, No. 5, 1610--1613 (2010; Zbl 1189.11042) Full Text: DOI
Sabatier, Jocelyn; Moze, Mathieu; Farges, Christophe LMI stability conditions for fractional order systems. (English) Zbl 1189.34020 Comput. Math. Appl. 59, No. 5, 1594-1609 (2010). MSC: 34A33 34D20 93D20 26A33 PDF BibTeX XML Cite \textit{J. Sabatier} et al., Comput. Math. Appl. 59, No. 5, 1594--1609 (2010; Zbl 1189.34020) Full Text: DOI
Magin, Richard L. Fractional calculus models of complex dynamics in biological tissues. (English) Zbl 1189.92007 Comput. Math. Appl. 59, No. 5, 1586-1593 (2010). MSC: 92C05 92C37 92C30 26A33 28A80 PDF BibTeX XML Cite \textit{R. L. Magin}, Comput. Math. Appl. 59, No. 5, 1586--1593 (2010; Zbl 1189.92007) Full Text: DOI
Chen, Wen (ed.); Baleanu, Dumitru (ed.); Tenreiro Machado, J. A. (ed.) Preface: Special issue of computers and mathematics with applications on fractional differentiation and its applications. (English) Zbl 1189.34002 Comput. Math. Appl. 59, No. 5, 1585 (2010). MSC: 34-06 26A33 35-06 PDF BibTeX XML Cite \textit{W. Chen} (ed.) et al., Comput. Math. Appl. 59, No. 5, 1585 (2010; Zbl 1189.34002) Full Text: DOI