×

Plane polynomial automorphisms of fixed multidegree. (English) Zbl 1187.14064

Let \(G\) be the group of polynomial automorphisms of the complex affine plane.
There are two well-known structures on \(G\). On one hand, the embedding of \(G\) into the set of endomorphisms of the plane, isomorphic to \(\mathbb{C}[X]^2\), gives a structure of an algebraic group of infinite dimension to \(G\). On the other hand, \(G\) is the amalgamated product of the group of affine automorphism and of the group of triangular automorphisms.
With this second structure, any element \(g\) of \(G\) has a multidegree, which is a \(n\)-uple of integers \((d_1,\dots,d_n)\) with \(d_i\geq 2\) for each \(i\). These are the degrees of the triangular automorphisms which appear in a minimal decomposition of \(G\) in the amalgamated product. Observe that the degree of \(g\) is the product of the \(d_i\).
If \(d\) is a \(n\)-tuple, we denote by \(G_d\) the set of all elements of \(G\) having multidegree \(d\). Moreover, for any positive degree, the subset \(G_{\leq d}\) of all elements of \(G\) of degree \(\leq d\) is know to be a closed subvariety of \(G\) of finite dimension.
In this article, the authors proves the following results:
Theorem A: If \(d=(d_1,\dots,d_l)\) and \(m\) is the product of the \(d_i\), then \(G_d\) is closed in \(G_{\leq m}\).
Theorem B: Each \(G_d\) is a smooth, locally closed subset of \(G\).
The author also gives corollaries and other results concerning the varieties \(G_d\) and \(G_{\leq m}\).

MSC:

14R10 Affine spaces (automorphisms, embeddings, exotic structures, cancellation problem)
14J50 Automorphisms of surfaces and higher-dimensional varieties
14E07 Birational automorphisms, Cremona group and generalizations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abhyankar S.S., Moh T.T.: Embeddings of the line in the plane. J. Reine Angew. Math. 276, 148–166 (1975) · Zbl 0332.14004
[2] Bass H., Connell E., Wright D.: The Jacobian conjecture: reduction of degree and formal expansion of the inverse. Bull. A.M.S. 7, 287–330 (1982) · Zbl 0539.13012 · doi:10.1090/S0273-0979-1982-15032-7
[3] Edo E., Furter J.-P.: Some families of polynomial automorphisms. J. Pure Appl. Algebra 194, 263–271 (2004) · Zbl 1062.14072 · doi:10.1016/j.jpaa.2004.04.006
[4] van den Essen, A.: Polynomial automorphisms and the Jacobian conjecture, Progress in Math. (Boston Mass.), vol. 190. Birkhäuser, Basel (2000) · Zbl 0962.14037
[5] Freudenburg, G.: Algebraic theory of locally nilpotent derivations. Encyclopaedia of Mathematical Sciences, vol. 136. Invariant Theory and Algebraic Transformation Groups, VII. Springer, Berlin (2006) · Zbl 1121.13002
[6] Friedland S., Milnor J.: Dynamical properties of plane polynomial automorphisms. Ergod. Th Dyn. Syst. 9, 67–99 (1989) · Zbl 0651.58027 · doi:10.1017/S014338570000482X
[7] Furter J.-P.: On the variety of automorphisms of the affine plane. J. Algebra 195, 604–623 (1997) · Zbl 0918.14005 · doi:10.1006/jabr.1997.7054
[8] Furter J.-P.: On the length of polynomial automorphisms of the affine plane. Math. Ann. 322, 401–411 (2002) · Zbl 0996.14031 · doi:10.1007/s002080100276
[9] Furter, J.-P.: Polynomial composition rigidity and plane polynomial automorphisms, submitted for publication. Available at http://perso.univ-lr.fr/jpfurter/ · Zbl 1341.14024
[10] Grothendieck, A., Dieudonné, J.: Eléments de géométrie algébrique, II Etude globale élémentaire de quelques classes de morphismes. Publ. Math. IHES 8 (1961)
[11] Humphreys, J.E.: Linear Algebraic Groups, 2nd edn. Graduate Texts in Math., vol. 21. Springer, Heidelberg (1981) · Zbl 0471.20029
[12] Jung H.W.E.: Über ganze birationale Transformationen der Ebene. J. Reine Angew. Math. 184, 161–174 (1942) · Zbl 0027.08503 · doi:10.1515/crll.1942.184.161
[13] Kambayashi T.: Pro-affine algebras, ind-affine groups and the Jacobian problem. J. Algebra 185(2), 481–501 (1996) · Zbl 0909.13013 · doi:10.1006/jabr.1996.0336
[14] Kambayashi T.: Some basic results on pro-affine algebras and ind-affine schemes. Osaka J. Math. 40(3), 621–638 (2003) · Zbl 1089.13015
[15] Kraft, H.: Geometrische Methoden in der Invariantentheorie. (German) [Geometrical methods in invariant theory] Aspects of Mathematics, D1. Friedr. Vieweg & Sohn, Braunschweig (1984)
[16] van der Kulk W.: On polynomial rings in two variables. Nieuw. Arch. Wisk. 1(3), 33–41 (1953) · Zbl 0050.26002
[17] Makar-Limanov, L.: Locally nilpotent derivations, a new ring invariant and applications. Lecture notes, (1998). Available at http://www.math.wayne.edu/\(\sim\)lml (1998) · Zbl 0934.16025
[18] Mumford, D.: The red book of varieties and schemes (2nd, expanded edn.). Lecture Notes in Math., vol. 1358. Springer, Berlin (1999) · Zbl 0945.14001
[19] Mumford, D., Fogarty, J., Kirwan, F.: Geometric invariant theory, 3rd edn. Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], 34. Springer, Berlin (1994) · Zbl 0797.14004
[20] Nagata M.: Imbedding of an abstract variety in a complete variety. J. Math. Kyoto Univ. 2, 1–10 (1962) · Zbl 0109.39503
[21] Nagata, M.: On automorphism group of k[x, y]. Lecture Notes in Math., vol. 5. Kyoto Univ. (1972) · Zbl 0306.14001
[22] Rentschler R.: Opérations du groupe additif sur le plan affine (French). C. R. Acad. Sci. Paris Sér. A–B 267, A384–A387 (1968) · Zbl 0165.05402
[23] Russell P., Sathaye A.: On finding and cancelling variables in k[X, Y, Z]. J. Algebra 57(1), 151–166 (1979) · Zbl 0411.13011 · doi:10.1016/0021-8693(79)90214-X
[24] Sathaye A.: On linear planes. Proc. Am. Math. Soc. 56, 1–7 (1976) · Zbl 0345.14013 · doi:10.1090/S0002-9939-1976-0409472-6
[25] Shafarevich, I.R.: On some infinite-dimensional groups. Rend. Mat. e Appl. (5) 25, (1–2) 208–212 (1966) · Zbl 0149.39003
[26] Shafarevich I.R.: On some infinite-dimensional groups II. Math. USSR Izv. 18, 214–226 (1982) · Zbl 0475.14036
[27] Shafarevich I.R.: Letter to the editors: ”On some infinite-dimensional groups II” (Russian) Izv. Ross. Akad. Nauk Ser. Mat. 59(3), 224 (1995)
[28] Suzuki M.: Propriétés topologiques des polynômes de deux variables complexes et automorphismes algébriques de l’espace C2. J. Math. Soc. Japan. 26, 241–257 (1974) · Zbl 0276.14001 · doi:10.2969/jmsj/02620241
[29] Wright D.: Abelian subgroups of Aut k (k[X,Y]) and applications to actions on the affine plane. Illinois J. Math. 23.4, 579–634 (1979) · Zbl 0461.20011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.