zbMATH — the first resource for mathematics

A simple model of genetic oscillations through regulated degradation. (English) Zbl 1154.37378
Summary: We present a simple model which aims at the description of the dynamics of cellular regulation through genetic circuits involving a feedback loop between a regulatory factor and a target that specifically triggers degradation of this regulator. In particular we study the possibility for this simple model to reproduce stable oscillations which have been recently observed experimentally. Our model takes the form of a time-delayed differential system and is inspired by the core circuit for the stress resistance p53 system. Depending on the protein degradation rates and the value of the delay we show that it is possible, in the presence of stress, to switch from a stable steady state to one of persistent oscillations (which die out when the stress disappears).
37N25 Dynamical systems in biology
92D10 Genetics and epigenetics
Full Text: DOI
[1] Adimy, M.; Crauste, F.; Halanay, A.; Neamtu, M.; Opri, D., Stability of limit cycles in a pluripotent stem cell dynamics model, Chaos, solitons & fractals, 27, 4, 1091-1107, (2006) · Zbl 1079.92022
[2] an der Heiden, U., Delays in physiological systems, J math biol, 8, 4, 345-364, (1979) · Zbl 0429.92009
[3] Arkin A. Biospice. <http://biospice.lbl.gov/>.
[4] Bar-Or, R.L.; Maya, R.; Segel, L.; Alon, U.; Levine, A.; Oren, M., Generation of oscillations by the p53-mdm2 feedback loop: a theoretical and experimental study, Proc natl acad sci USA, 97, 21, 11250-11255, (2000)
[5] Barrio, M.; Burrage, K.; Leier, A.; Tian, T., Oscillatory regulation of hes1: discrete stochastic delay modelling and simulation, Plos comput biol, 2, 9, e117, (2006)
[6] Bernard, S.; Cajavec, B.; Pujo-Menjouet, L.; Mackey, M.C.; Herzel, H., Modelling transcriptional feedback loops: the role of gro/tle1 in hes1 oscillations, Philos trans A math phys eng sci, 364, 1842, 1155-1170, (2006) · Zbl 1152.92316
[7] Bolouri, H.; Davidson, E.H., Modeling transcriptional regulatory networks, Bioessays, 24, 12, 1118-1129, (2002)
[8] Bottani, S.; Grammaticos, B., Analysis of a minimal model of p53 oscillations, J theor biol, 249, 2, 235-245, (2007)
[9] Bratsun, D.; Volfson, D.; Tsimring, L.S.; Hasty, J., Delay-induced stochastic oscillations in gene regulation, Proc natl acad sci USA, 102, 41, 14593-14598, (2005)
[10] de Jong, H., Modeling and simulation of genetic regulatory systems: a literature review, J comput biol, 9, 1, 67-103, (2002)
[11] d’Onofrio, A., On a family of models of cell division cycle, Chaos, solitons & fractals, 27, 5, 1205-1212, (2006) · Zbl 1079.92028
[12] Dunlap, J.C., Molecular bases for Circadian clocks, Cell, 96, 2, 271-290, (1999)
[13] Elowitz, M.B.; Leibler, S., A synthetic oscillatory network of transcriptional regulators, Nature, 403, 6767, 335-338, (2000)
[14] Endy, D.; Brent, R., Modelling cellular behaviour, Nature, 409, 6818, 391-395, (2001)
[15] Fages, F.; Soliman, S.; Chabrier-Rivier, N., Modelling and querying interaction networks in the biochemical abstract machine BIOCHAM, J biol phys chem, 4, 64-73, (2004)
[16] Fung, E.; Wong, W.W.; Suen, J.K.; Bulter, T.; Lee, S.-g.; Liao, J.C., A synthetic gene-metabolic oscillator, Nature, 435, 7038, 118-122, (2005)
[17] Geva-Zatorsky, N.; Rosenfeld, N.; Itzkovitz, S.; Milo, R.; Sigal, A.; Dekel, E., Oscillations and variability in the p53 system, Mol syst biol, 2, 2006.0033, (2006)
[18] Gillespie, D., Exact stochastic simulation of coupled chemical reactions, J phys chem, (1977)
[19] Goldbeter, A., Computational approaches to cellular rhythms, Nature, 420, 6912, 238-245, (2002)
[20] Gonze, D.; Leloup, J.C.; Goldbeter, A., Theoretical models for Circadian rhythms in neurospora and drosophila, CR acad sci III, 323, 1, 57-67, (2000)
[21] Goodwin, B., Oscillatory behavior in enzymatic control processes, Adv enzyme regul, 3, 425-438, (1965)
[22] Gottesman, S., Regulation by proteolysis: developmental switches, Curr opin microbiol, 2, 2, 142-147, (1999)
[23] Gottesman, S.; Maurizi, M.R., Regulation by proteolysis: energy-dependent proteases and their targets, Microbiol rev, 56, 4, 592-621, (1992)
[24] Griffith, J., Mathematics of cellular control processes. I. negative feedback to one gene, J theor biol, 20, 2, 202-208, (1968)
[25] Griffith, J., Mathematics of cellular control processes. II. positive feedback to one gene, J theor biol, 20, 2, 209-216, (1968)
[26] Haupt, Y.; Maya, R.; Kazaz, A.; Oren, M., Mdm2 promotes the rapid degradation of p53, Nature, 387, 6630, 296-299, (1997)
[27] Hirata, H.; Yoshiura, S.; Ohtsuka, T.; Bessho, Y.; Harada, T.; Yoshikawa, K., Oscillatory expression of the bhlh factor hes1 regulated by a negative feedback loop, Science, 298, 5594, 840-843, (2002)
[28] Hoffmann, A.; Levchenko, A.; Scott, M.L.; Baltimore, D., The ikappab-NF-kappab signaling module: temporal control and selective gene activation, Science, 298, 5596, 1241-1245, (2002)
[29] Hsing, A.; Faller, D.V.; Vaziri, C., DNA-damaging aryl hydrocarbons induce mdm2 expression via p53-independent post-transcriptional mechanisms, J biol chem, 275, 34, 26024-26031, (2000)
[30] Hung, D.Y.; Shapiro, L., A signal transduction protein cues proteolytic events critical to caulobacter cell cycle progression, Proc natl acad sci USA, 99, 20, 13160-13165, (2002)
[31] Jenal, U.; Hengge-Aronis, R., Regulation by proteolysis in bacterial cells, Curr opin microbiol, 6, 2, 163-172, (2003)
[32] Jensen, M.H.; Sneppen, K.; Tiana, G., Sustained oscillations and time delays in gene expression of protein hes1, FEBS lett, 541, 1-3, 176-177, (2003)
[33] Kubbutat, M.H.; Ludwig, R.L.; Levine, A.J.; Vousden, K.H., Analysis of the degradation function of mdm2, Cell growth differ, 10, 2, 87-92, (1999)
[34] Kuras, L.; Rouillon, A.; Lee, T.; Barbey, R.; Tyers, M.; Thomas, D., Dual regulation of the met4 transcription factor by ubiquitin-dependent degradation and inhibition of promoter recruitment, Mol cell, 10, 1, 69-80, (2002)
[35] Kussie, P.H.; Gorina, S.; Marechal, V.; Elenbaas, B.; Moreau, J.; Levine, A.J., Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain, Science, 274, 5289, 948-953, (1996)
[36] Lahav, G.; Rosenfeld, N.; Sigal, A.; Geva-Zatorsky, N.; Levine, A.J.; Elowitz, M.B., Dynamics of the p53-mdm2 feedback loop in individual cells, Nat genet, 36, 2, 147-150, (2004)
[37] Laub, M.T.; Chen, S.L.; Shapiro, L.; McAdams, H.H., Genes directly controlled by ctra, a master regulator of the caulobacter cell cycle, Proc natl acad sci USA, 99, 7, 4632-4637, (2002)
[38] Lechner, M.S.; Mack, D.H.; Finicle, A.B.; Crook, T.; Vousden, K.H.; Laimins, L.A., Human papillomavirus E6 proteins bind p53 in vivo and abrogate p53-mediated repression of transcription, Embo j, 11, 8, 3045-3052, (1992)
[39] Lewis, J., Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator, Curr biol, 13, 16, 1398-1408, (2003)
[40] Liberek, K.; Georgopoulos, C., Autoregulation of the Escherichia coli heat shock response by the dnak and dnaj heat shock proteins, Proc natl acad sci USA, 90, 23, 11019-11023, (1993)
[41] Ma, L.; Wagner, J.; Rice, J.J.; Hu, W.; Levine, A.J.; Stolovitzky, G.A., A plausible model for the digital response of p53 to DNA damage, Proc natl acad sci USA, 102, 40, 14266-14271, (2005)
[42] Mackey, M., A unified hypothesis on the origin of aplastic anaemia and periodic hematopoiesis, Blood, 51, 946-956, (1978)
[43] Mackey, M.C.; Santillán, M.; Yildirim, N., Modeling operon dynamics: the tryptophan and lactose operons as paradigms, CR biol, 327, 3, 211-224, (2004)
[44] Mazurie, A.; Bottani, S.; Vergassola, M., An evolutionary and functional assessment of regulatory network motifs, Genome biol, 6, 4, R35, (2005)
[45] Mendes P, Kummer U. Complex pathway simulator. <http://www.copasi.org/>.
[46] Mendrysa, S.M.; Perry, M.E., The p53 tumor suppressor protein does not regulate expression of its own inhibitor, MDM2, except under conditions of stress, Mol cell biol, 20, 6, 2023-2030, (2000)
[47] Mihalas, G.; Simon, Z.; Balea, G.; Popa, E., Possible oscillatory behavior in p53-mdm2 interaction computer simulation, J biol syst, 8, 21-29, (2000)
[48] Mihalas, G.I.; Neamtu, M.; Opris, D.; Horhat, F., A dynamic p53-mdm2 model with time delay, Chaos, solitons & fractals, 30, 936-945, (2006) · Zbl 1142.92321
[49] Moll, U.M.; Petrenko, O., The mdm2-p53 interaction, Mol cancer res, 1, 1001-1008, (2003)
[50] Monk, N.A.M., Oscillatory expression of hes1, p53, and NF-kappab driven by transcriptional time delays, Curr biol, 13, 16, 1409-1413, (2003)
[51] Murray, J.D., Mathematical biology, (2002), Springer, [chapter Appendix B]
[52] Nelson, D.E.; Ihekwaba, A.E.C.; Elliott, M.; Johnson, J.R.; Gibney, C.A.; Foreman, B.E., Oscillations in nf-kappab signaling control the dynamics of gene expression, Science, 306, 5696, 704-708, (2004)
[53] Pourquié, O., The segmentation clock: converting embryonic time into spatial pattern, Science, 301, 5631, 328-330, (2003)
[54] Pruteanu, M.; Hengge-Aronis, R., The cellular level of the recognition factor rssb is rate-limiting for sigmas proteolysis: implications for rssb regulation and signal transduction in sigmas turnover in Escherichia coli, Mol microbiol, 45, 6, 1701-1713, (2002)
[55] Rouillon, A.; Barbey, R.; Patton, E.E.; Tyers, M.; Thomas, D., Feedback-regulated degradation of the transcriptional activator met4 is triggered by the SCF(met30) complex, Embo j, 19, 2, 282-294, (2000)
[56] Santillán, M.; Mackey, M.C., Influence of catabolite repression and inducer exclusion on the bistable behavior of the lac operon, Biophys J, 86, 3, 1282-1292, (2004)
[57] Sauro, H., Jarnac: a system for interactive metabolic analysis, (), 221-228
[58] Scheper, T.; Klinkenberg, D.; Pennartz, C.; van Pelt, J., A mathematical model for the intracellular Circadian rhythm generator, J neurosci, 19, 1, 40-47, (1999)
[59] Smith, H., Oscillations and multiple steady states in a cyclic gene model with repression, J math biol, 25, 2, 169-190, (1987) · Zbl 0619.92004
[60] Smolen, P.; Baxter, D.; Byrne, J., Modeling transcriptional control in gene networks—methods, recent results, and future directions, Bull math biol, 62, 2, 247-292, (2000) · Zbl 1323.92088
[61] Stommel, J.M.; Wahl, G.M., Accelerated MDM2 auto-degradation induced by DNA-damage kinases is required for p53 activation, Embo j, 23, 7, 1547-1556, (2004)
[62] Stommel, J.M.; Wahl, G.M., A new twist in the feedback loop: stress-activated MDM2 destabilization is required for p53 activation, Cell cycle, 4, 3, 411-417, (2005)
[63] Straus, D.; Walter, W.; Gross, C.A., Dnak, dnaj, and grpe heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of sigma 32, Genes dev, 4, 12A, 2202-2209, (1990)
[64] Thomas, R., Boolean formalization of genetic control circuits, J theor biol, 42, 3, 563-585, (1973)
[65] Thomas, R., On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillations, (), 180-193
[66] Thomas, R.; Kaufman, M., Multistationarity, the basis of cell differentiation and memory. II. logical analysis of regulatory networks in terms of feedback circuits, Chaos, 11, 1, 180-195, (2001) · Zbl 0997.92012
[67] Tiana, G.; Jensen, M.; Sneppen, K., Time delay as a key to apoptosis induction in the p53 network, Eur phys J B, 29, 135-140, (2002)
[68] Tyson, J.; Chen, K.; Novak, B., Network dynamics and cell physiology, Nat rev mol cell biol, 2, 12, 908-916, (2001)
[69] Tyson, J.; Novak, B., Regulation of the eukaryotic cell cycle: molecular antagonism, hysteresis, and irreversible transitions, J theor biol, 210, 2, 249-263, (2001)
[70] Tyson, J.; Othmer, H., The dynamics of feedback control circuits in biochemical pathways, Prog theor biol, 5, 1-62, (1978) · Zbl 0448.92010
[71] Wahl, G.M.; Stommel, J.M.; Krummel, K.; Wade, M., 25 years of p53 research, (2005), Springer, [Chapter 4: Gatekeepers of the guardian: p53 regulation by post-translational modification]
[72] Yeger-Lotem, E.; Margalit, H., Detection of regulatory circuits by integrating the cellular networks of protein – protein interactions and transcription regulation, Nucl acids res, 31, 20, 6053-6061, (2003)
[73] Yildirim, N.; Mackey, M.C., Feedback regulation in the lactose operon: a mathematical modeling study and comparison with experimental data, Biophys J, 84, 5, 2841-2851, (2003)
[74] Zheng, Z.; Zhou, T.; Zhang, S., Dynamical behavior in the modeling of cell division cycle, Chaos, solitons & fractals, 11, 14, 2371-2378, (2000) · Zbl 0971.92013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.