×

zbMATH — the first resource for mathematics

Semi-orthogonal frame wavelets and Parseval frame wavelets associated with GMRA. (English) Zbl 1198.42050
Summary: We study semi-orthogonal frame wavelets and Parseval frame wavelets (PFWs) in \(L^{2}(\mathbb{R}^d)\) with matrix dilations of form \((Df)(x)=\sqrt 2f(Ax)\), where \(A\) is an arbitrary expanding \(d\times d\) matrix with integer coefficients, such that \(|det A| = 2\). Firstly, we obtain a necessary and sufficient condition for a frame wavelet to be a semi-orthogonal frame wavelet. Secondly, we present a necessary condition for the semi-orthogonal frame wavelets. When the frame wavelets are the PFWs, we prove that all PFWs associated with generalized multiresolution analysis (GMRA) are equivalent to a closed subspace \(W_{0}\) for which \(\{T_k\psi :k \in \mathbb{Z}^d\}\) is a Parseval frame (PF). Finally, by showing the relation between principal shift invariant spaces and their bracket function, we discover a property of the PFWs associated with GMRA by the PFWs’ minimal vector-filter. In each section, we construct concrete examples.

MSC:
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
94A12 Signal theory (characterization, reconstruction, filtering, etc.)
94A11 Application of orthogonal and other special functions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] El Naschie, M.S., Elementary prerequisites for E-infinity, Chaos, solitons & fractals, 30, 3, 579-605, (2006)
[2] El Naschie, M.S., Symmetry group prerequisites for E-infinity in high energy physics, Chaos, solitons & fractals, 35, 1, 202-211, (2008)
[3] El Naschie, M.S., SO(10) grand unification in a fuzzy setting, Chaos, solitons & fractals, 32, 3, 958-961, (2007)
[4] El Naschie, M.S., Exceptional Lie groups hierarchy and the structure of the micro universe, Int J nonlinear sci numer simulat, 8, 3, 445-450, (2007)
[5] El Naschie, M.S., Notes on exceptional Lie symmetry groups hierarchy and possible implications for E-infinity high energy physics, Chaos, solitons & fractals, 35, 1, 67-70, (2008)
[6] El Naschie, M.S., A review of applications and results of E-infinity theory, Int J nonlinear sci numer simul, 8, 1, 11-20, (2007)
[7] El Naschie, M.S., Notes on exceptional Lie symmetry groups hierarchy and possible implications for E-infinity high energy physics, Chaos, solitons & fractals, 35, 1, 67-70, (2008)
[8] El Naschie MS. Mohamed El Naschie answers a few questions about this month’s emerging research front in the field of physics. Thomason Essential Science Indicators. <http://esi-topics.com/erf/2004/october04-MohamedElNaschie.html>.
[9] El Naschie, M.S., Hilbert, Fock and Cantorian spaces in the quantum two-slit gedanken experiment, Chaos, solitons & fractals, 27, 1, 39-42, (2006) · Zbl 1082.81502
[10] El Naschie, M.S., A review of E-infinity theory and the mass spectrum of high energy particle physics, Chaos, solitons & fractals, 19, 1, 209-236, (2004) · Zbl 1071.81501
[11] El Naschie, M.S., A guide to the mathematics of E-infinity Cantorian spacetime theory, Chaos, solitons & fractals, 25, 5, 955-964, (2005) · Zbl 1071.81503
[12] El Naschie, M.S., Hilbert space, the number of Higgs particles and the quantum two-slit experiment, Chaos, solitons & fractals, 27, 1, 9-13, (2006) · Zbl 1082.81501
[13] Iovane, G.; Mohamed, E.I., Naschie \(\operatorname{\&z.epsiv;}^\infty\) Cantorian spacectime and its consequences in cosmology, Chaos, solitons & fractals, 25, 3, 775-779, (2005)
[14] Iovane, G., Waveguiding and mirroring effects in stochastic self-similar and fractal universe, Chaos, solitons & fractals, 23, 3, 691-700, (2004) · Zbl 1070.83542
[15] Iovane, G.; Laserra, E.; Tortoiello, F.S., Stochastic self-similar and fractal universe, Chaos, solitons & fractals, 20, 2, 415-426, (2004) · Zbl 1054.83509
[16] Duffin, R.J.; Schaeffer, A.C., A class of nonharmonic Fourier series, Trans am math soc, 72, 2, 341-366, (1952) · Zbl 0049.32401
[17] Daubechies, I., The wavelet transform, time-frequency localization and signal analysis, IEEE trans inform theory, 36, 9, 961-1005, (1990) · Zbl 0738.94004
[18] Daubechies I. Ten Lectures on Wavelets. In: CBS-NSF Regional Conferences in Applied Mathematics, 61, SIAM; 1992. MR 93e:42045. · Zbl 0776.42018
[19] Baggett, L.; Medina, H.; Merrill, K., Generalized multiresolution analyses, and a construction procedure for all wavelet sets in \(R^d\), J Fourier anal appl, 5, 6, 563-573, (1999) · Zbl 0972.42021
[20] Bownik, M., The structure of shift-invariant subspace of \(L^2(R^d)\), J funct anal, 177, 2, 282-309, (2000) · Zbl 0986.46018
[21] Bownik, M.; Rzeszotnik, Z.; Speegle, D., A characterization of dimension function of orthogonal wavelets, Appl comput harmon anal, 10, 1, 79-92, (2001) · Zbl 0979.42018
[22] Bakić, D., Semi-orthogonal Parseval frame wavelets and generalized multiresolution analyses, Appl comput harmon anal, 21, 3, 281-304, (2006) · Zbl 1106.42026
[23] Dai, X.; Diao, Y.; Gu, Q.; Han, D., Frame wavelet sets in \(R^d\), J comput appl math, 155, 1, 69-82, (2003) · Zbl 1021.42019
[24] Bakić, D.; Krishtal, I.; Wilson, E.N., Parseval frame wavelets with \(E_n^{(2)}\)-dilations, Appl comput harmon anal, 19, 3, 386-431, (2005) · Zbl 1090.42020
[25] Iovane, G.; Giordano, P., Wavelets and multiresolution analysis: nature of \(\operatorname{\&z.epsiv;}^{(\infty)}\) Cantorian space – time, Chaos, solitons & fractals, 32, 3, 896-910, (2007)
[26] Masry, E., The wavelet transform of stochastic processes with stationary increments and its application to fractional Brownian motion, IEEE trans inform theory, 39, 1, 260-264, (1993) · Zbl 0768.60036
[27] Flandrin, P., Wavelet analysis and synthesis of fractional Brownian motion, IEEE trans inform theory, 38, 2, 910-917, (1992) · Zbl 0743.60078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.