×

zbMATH — the first resource for mathematics

Permanence for a class of periodic time-dependent predator-prey system with dispersal in a patchy-environment. (English) Zbl 1154.34341
Summary: We study two species predator-prey Lotka-Volterra type dispersal system with periodic coefficients in two patches, in which both the prey and predator species can disperse between two patches. By utilizing analytic method, sufficient and realistic conditions on permanence and the existence of periodic solution are established. The theoretical results are confirmed by a special example and numerical simulations.

MSC:
34D05 Asymptotic properties of solutions to ordinary differential equations
92D25 Population dynamics (general)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Amine, Z., A periodic prey – predator system, J math anal appl, 185, 477-489, (1994) · Zbl 0808.34043
[2] Beretta, E.; Solimano, F.; Takeuchi, Y., Global stability and periodic orbits for two-patch predator – prey diffusion-delay models, Math biosci, 85, 153-183, (1987) · Zbl 0634.92017
[3] Beretta, E.; Kuang, Y., Convergence results in a well-known delayed predator – prey system, J math anal appl, 204, 840-853, (1996) · Zbl 0876.92021
[4] Cui, J.; Chen, L.S., Permanence and extinction in logistic and lotka – volterra systems with diffusion, J math anal appl, 258, 235-512, (2001) · Zbl 0985.34061
[5] Cui, J.; Takeuchi, Y., Permanence of a single-species dispersal system and predator survival, J comput appl math, 175, 375-394, (2005) · Zbl 1058.92042
[6] Cui, J.; Takeuhi, Y.; Lin, Z., Permanence and extinction for dispersal population system, J math anal appl, 298, 73-93, (2004) · Zbl 1073.34052
[7] Edelstein-keshet, L., Mathematical models in biology, (1988), Random House New York · Zbl 0674.92001
[8] Feedman, H.I., Persistence in models of three interacting predator – prey populations, Math biosci, 68, 213-231, (1984) · Zbl 0534.92026
[9] Feedman, H.I.; Takeuchi, Y., Predator survival versus extinction as a function of dispersal in a predator – prey model with patchy environment, Appl anal, 31, 247-266, (1989) · Zbl 0641.92016
[10] Freedman, H.I.; Takeuchi, Y., Global stability and predator dynamics in a model of prey dispersal in a patchy environment, Nonlinear anal, 13, 993-1002, (1989) · Zbl 0685.92018
[11] Kuang, Y.; Takeuchi, Y., Predator – prey dynamics in models of prey dispersal in two-patch environments, Math biosci, 120, 77-98, (1994) · Zbl 0793.92014
[12] Levin, S.A., Dispersion and population interactions, Amer nat, 108, 207-228, (1974)
[13] Levin, S.A.; Segel, L.A., Hypothesis to explain the origin of planktonic patchness, Nature, 259, 659, (1976)
[14] Liu, B.; Zhang, Y.; Chen, L.S., Dynamic complexities of a Holling I predator – prey model concerning periodic biological and chemical control, Chaos, solitons & fractals, 22, 123-134, (2004) · Zbl 1058.92047
[15] Liu, X.; Chen, L.S., Complex dynamics of Holling type II lotka – volterra predator – prey system with impulsive perturbations on the predator, Chaos, solitons & fractals, 16, 311-320, (2003) · Zbl 1085.34529
[16] Liu, Z.; Yuan, R., Stability and bifurcation in a harvested one-predator – two-prey model with delays, Chaos, solitons & fractals, 27, 1395-1407, (2006) · Zbl 1097.34051
[17] Mchich, R.; Auger, P.; Poggiale, J., Effect of predator density dependent dispersal of prey on stability of a predator – prey system, Math biosci, 206, 343-356, (2007) · Zbl 1114.92069
[18] Ricardo, L.-R.; Daniele, F.-P., Indirect allee effect, bistability and chaotic oscillations in a predator – prey discrete model of logistic type, Chaos, solitons & fractals, 24, 85-101, (2005) · Zbl 1066.92053
[19] Smith, H.L., Cooperative systems of differential equation with concave nonlinearities, Nonlinear anal, 10, 1037-1052, (1986) · Zbl 0612.34035
[20] Skellam, J.D., Random dispersal in theoretical population, Miometrika, 38, 196-216, (1951) · Zbl 0043.14401
[21] Song, X.; Chen, L., Persistence and periodic orbits for two species predator – prey system with diffusion, Can appl math quart, 6, 233-244, (1998) · Zbl 0941.92032
[22] Song, X.; Chen, L., Conditions for global attractivity of n-patches predator – prey dispersion-delay models, J math anal appl, 253, 1-15, (2001) · Zbl 0982.34061
[23] Takeuchi, Y.; Adachi, N., Existence and bifurcation of stable equilibrium in two-prey, one predator communities, Bull math biol, 45, 6, 877-900, (1983) · Zbl 0524.92025
[24] Takeuchi, Y.; Wang, W.; Saito, Y., Global stability of population models with patch structure, Nonlinear anal: RWA, 7, 2, 235-247, (2006) · Zbl 1085.92053
[25] Teng, Z., Uniform persistence of the periodic predator – prey lotka – volterra systems, Appl anal, 72, 339-352, (1999) · Zbl 1031.34045
[26] Teng, Z.; Chen, L., Permanence and extinction of periodic predator – prey systems in patchy environment with delay, Nonlinear anal: RWA, 4, 335-364, (2003) · Zbl 1018.92033
[27] Teng, Z.; Lu, Z., The effect of dispersal on single-species nonautonomous dispersal models with delays, J math biol, 42, 439-454, (2001) · Zbl 0986.92024
[28] Teng, Z.; Li, Z.; Jiang, H., Permanence criteria in non-autonomous predator – prey Kolmogorov systems and its applications, Dyna syst, 19, 1-24, (2004)
[29] Teng, Z.; Chen, L., The positive periodic solutions of periodic kolmogorove type systems with delays, Acta math appl sinica, 22, 446-456, (1999), [in Chinese] · Zbl 0976.34063
[30] Thieme, H.R., Uniform persistence and permanence for non-autonomous semiflows in population biology, Math biosci, 166, 173-201, (2000) · Zbl 0970.37061
[31] Thieme, H.R., Uniform weak implies uniform strong persistence for non-autonomous semiows, Proc AMS, 127, 2395, (1999) · Zbl 0918.34053
[32] Wang, W.; Ma, Z., Asymptotic behavior of a predator – prey system with diffusion and delays, J math anal appl, 206, 191-204, (1997) · Zbl 0872.92019
[33] Xu, R.; Chaplain, M.A.J.; Davidson, F.A., Periodic solutions for a delayed predator – prey model of prey dispersal in two-patch environments, Nonlinear anal, 5, 183-206, (2004) · Zbl 1066.92059
[34] Zhang, L.; Teng, Z., Permanence in a periodic predator – prey system with prey dispersal and predator density-independent, J biol syst, 14, 4, 491-507, (2006) · Zbl 1116.92073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.