×

A theoretical study of the specific heat and Debye temperature of low-dimensional materials. (English) Zbl 1214.82109

Summary: A theoretical model is proposed in this work for an evaluation of the specific heat and Debye temperature of low-dimensional materials. In the model, the allowed discrete vibration modes in the confined direction(s) are first obtained by solving the elastic vibration equation. The acoustic specific heat is then calculated by summing over these discrete, excited, phonon modes and integrated over the continuous wave numbers in the unconfined directions. An effective Debye temperature is then defined as the one appearing in the conventional Debye model that gives a same value for the specific heat. It is found that the so-defined Debye temperature of the mixed polarization associated with nanowires is about half the longitudinal Debye temperature of bulk materials at room temperature. This agrees with the experimental observations. Those of both the dilatational and flexural polarizations associated with the thin films on the other hand are about 28% smaller than the bulk longitudinal Debye temperature. When the temperature is so low that there are only a few phonon modes excited, these low-dimensional materials show two-dimensional behavior, excluding the flexural polarization of the thin films, which shows one-dimensional behavior instead due to its parabolic dispersion relation at small dimensionless wave numbers.

MSC:

82D20 Statistical mechanics of solids
82D25 Statistical mechanics of crystals
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Wisniewski, S.; Staniszewski, B.; Szymanik, R.: Thermodynamics of nonequilibrium processes, (1976) · Zbl 0339.76001
[2] Capinski, W. S.; Cardona, M.; Katzer, D. S.; Maris, H. J.; Ploog, K.; Ruf, T.: Thermal conductivity of gaas/alas superlattices, Physica B 263 – 264, 530-532 (1999)
[3] Cahilla, D. G.; Ford, W. K.; Goodson, K. E.; Mahan, G. D.; Majumdar, A.; Maris, H. J.; Merlin, R.; Phillpot, S. R.: Nanoscale thermal transport, J. appl. Phys. 93, 793-818 (2003)
[4] Venkatasubramanian, R.; Siivola, E.; Colpitts, T.; O’quinn, B.: Thin-film thermoelectric devices with high room-temperature figures of merit, Nature 413, 597-602 (2001)
[5] Chen, G.; Shakouri, A.: Heat transfer in nanostructures for solid-state energy conversion, J. heat transfer 124, 242-252 (2002)
[6] Zou, J.; Balandin, A.: Phonon heat conduction in a semiconductor nanowire, J. appl. Phys. 89, 2932-2938 (2001)
[7] Balandin, A.; Wang, K. L.: Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well, Phys. rev. B 58, 1544-1549 (1998)
[8] Dames, C.; Poudel, B.; Wang, W. Z.; Huang, J. Y.; Ren, Z. F.; Sun, Y.; Oh, J. I.; Opeil, C.; Naughton, M. J.; Chen, G.: Low-dimensional phonon specific heat of titanium dioxide nanotubes, Appl. phys. Lett. 87, 031901 (2005)
[9] Neeleshwar, S.; Chen, C. L.; Tsai, C. B.; Chen, Y. Y.: Size-dependent properties of cdse quantum dots, Phys. rev. B 71, 201307 (2005)
[10] Comsa, G. H.; Heitkamp, D.; Rade, H. S.: Effect of size on the vibration specific heat of ultrafine palladium particles, Solid state commun. 24, 547-550 (1977)
[11] Wang, B. X.; Zhou, L. P.; Peng, X. F.: Surface and size effects on the specific heat capacity of nanoparticles, Int. J. Thermophys. 27, 139-151 (2006)
[12] Prasher, R. S.; Phelan, P. E.: Size effects on the thermodynamic properties of thin solid films, J. heat transfer 120, 1078-1081 (1998)
[13] Prasher, R. S.; Phelan, P. E.: Non-dimensional size effects on the thermodynamic properties of solids, Int. J. Heat mass transfer 42, 1991-2001 (1999) · Zbl 0986.74023 · doi:10.1016/S0017-9310(98)00296-8
[14] Schaefer, C.: Einfuehrung in die theoretische physik, Z. phys. 7, 287 (1921) · JFM 48.0874.01
[15] Baltes, H. P.; Hilf, E. F.: Specific heat of lead grains, Solid state commun. 12, 369-373 (1973)
[16] Lautenschläger, R.: Improved theory of the vibrational specific heat of lead grains, Solid state commun. 16, 1331-1334 (1975)
[17] Huang, M. J.; Chong, W. Y.; Chang, T. M.: The lattice thermal conductivity of a semiconductor nanowire, J. appl. Phys. 99, 114318 (2006)
[18] Huang, M. J.; Chang, T. M.; Chong, W. Y.: A new lattice thermal conductivity model of a thin film semiconductor, Int. J. Heat mass transfer 50, 67-74 (2007) · Zbl 1105.82309 · doi:10.1016/j.ijheatmasstransfer.2006.06.044
[19] Yang, C. C.; Xiao, M. X.; Li, W.; Jiang, Q.: Size effects on Debye temperature, Einstein temperature, and volume thermal expansion coefficient of nanocrystals, Solid state commun. 139, 148-152 (2006)
[20] Lindemann, F. A.: über die berechnung molecularer eigenfrequenzen, Z. phys. 11, 609-612 (1910) · JFM 41.0996.04
[21] Mott, N. F.: The resistance of liquid metals, Proc. R. Soc. London A 146, 465-472 (1934)
[22] Ashcroft, N. W.; Mermin, N. D.: Solid state physics, (1976) · Zbl 1118.82001
[23] Bannov, N.; Aristov, V.; Mitin, V.: Electron relaxation times due to the deformation-potential interaction of electrons with confined acoustic phonons in a free-standing quantum well, Phys. rev. B. 51, 9930-9942 (1995)
[24] Khitun, A.; Balandin, A.; Wang, K. L.: Modification of the lattice thermal conductivity in silicon quantum wires due to spatial confinement of acoustic phonons, Superlattice microst. 26, 181-193 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.