×

Gridless DSMC. (English) Zbl 1143.82330

Summary: This work concerns the development of a gridless method for modeling the inter-particle collisions of a gas. Conventional fixed-grid algorithms are susceptible to grid-mismatch to the physical system, resulting in erroneous solutions. On the contrary, a gridless algorithm can be used to simulate various physical systems without the need to perform grid-mesh optimization. An octree algorithm provides the gridless character to a direct simulation Monte Carlo (DSMC) code by automatically sorting nearest-neighbor gas particles into local clusters. Automatic clustering allows abstraction of the DSMC algorithm from the physical system of the problem in question. This abstraction provides flexibility for domains with complex geometries as well as a decreased code development time for a given physical problem. To evaluate the practicality of this code, the time required to perform the gridless overhead from the octree sort is investigated. This investigation shows that the gridless method can indeed be practical and compete with other DSMC codes. To validate gridless DSMC, results of several benchmark simulations are compared to results from a fixed-grid code. The benchmark simulations include several Couette flows of differing Knudsen number, low-velocity flow past a thin plate, and two hypersonic flows past embedded objects at a Mach number of 10. The results of this comparison to traditional DSMC are favorable. This work is intended to become part of a larger gridless simulation tool for collisional plasmas. Corresponding work includes a gridless field solver using an octree for the evaluation of long range electrostatic forces. We plan to merge the two methods creating a gridless framework for simulating collisional-plasmas.

MSC:

82C80 Numerical methods of time-dependent statistical mechanics (MSC2010)
82C70 Transport processes in time-dependent statistical mechanics
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
82D10 Statistical mechanics of plasmas
65L05 Numerical methods for initial value problems involving ordinary differential equations

Software:

QSHEP3D; TREESPH; DRACO
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Chapman, S.; Cowling, T. G., The Mathematical Theory of Non-Uniform Gases (1952), Cambridge University Press: Cambridge University Press Cambridge, England · Zbl 0049.26102
[2] Vincenti, W. G.; Kruger, C. H., Introduction to Physical Gas Dynamics (1965), John Wiley & Sons: John Wiley & Sons New York
[3] Bird, G. A., Molecular Gas Dynamics and the Direct Simulation of Gas Flows (1994), Oxford University Press: Oxford University Press New York · Zbl 0709.76511
[4] Combi, M., Time-dependent gas kinetics in tenuous planetary atmospheres: the cometary coma, Int. J. Sol. Sys. Stud., 123, 207-226 (1996)
[5] M.S.Ivanov, G.N. Markelov, S.F. Gimelshein, S.G.Antonov, DSMC studies of high-altitude aerodynamics of reentry capsule, in: Proceedings of the 20th International Symposium on Rarified Gas Dynamics, Beijing, China, 1997, pp. 453-458.; M.S.Ivanov, G.N. Markelov, S.F. Gimelshein, S.G.Antonov, DSMC studies of high-altitude aerodynamics of reentry capsule, in: Proceedings of the 20th International Symposium on Rarified Gas Dynamics, Beijing, China, 1997, pp. 453-458.
[6] L. Brieda, R. Kafafy, J. Pierru, J. Wang, Development of the DRACO code for modeling electric propulsion plume interactions, in: Proceedings of the 40th Joint Propulsion Conference, Fort Laudardale, FL, USA, 2004.; L. Brieda, R. Kafafy, J. Pierru, J. Wang, Development of the DRACO code for modeling electric propulsion plume interactions, in: Proceedings of the 40th Joint Propulsion Conference, Fort Laudardale, FL, USA, 2004.
[7] Christlieb, A. J.; Hitchon, W. N.G., Three-dimensional solutions of the Boltzmann equation: heat transport at long mean free paths, Phys. Rev. E, 65, 056708 (2002)
[8] Christlieb, A. J.; Hitchon, W. N.G.; Boyd, I. D.; Sun, Q. H., Kinetic description of flow past a micro-plate, J. Comp. Phys., 195, 508-527 (2004) · Zbl 1115.76406
[9] Christlieb, A. J.; Rossmanith, J.; Smereka, P., The broadwell model in a thin channel, Commun. Math. Sci., 2, 443-476 (2004) · Zbl 1160.76405
[10] Wu, Huang; Christopher, J., Foot. Direct simulation of evaporative cooling, J. Phys. B, 29, 321 (1996)
[11] Mandonnet, E.; Minguzzi, A.; Dum, R.; Carusotto, I.; Castin, Y.; Dalibard, J., Evaporative cooling of an atomic beam, Euro. Phys. J. D, 10, 1, 9-18 (2000)
[12] Parker, G. J.; Hitchon, W. N.G.; Lawler, J. E., Self-consistent kinetic model of an entire DC discharge, Phys. Lett. A, 174, 308-311 (1993) · Zbl 0769.76050
[13] Christlieb, A. J.; Hitchon, W. N.G.; Keiter, E. R., A computational investigation of the effects of varying discharge geometry for an inductively coupled plasma, IEEE Trans. Plasma Sci., 28, 2214-2231 (2000)
[14] Verboncoeur, J. P., Particle simulation of plasmas: review and advances, Plasma Phys. Controlled Fusion, 47, A231-A260 (2005)
[15] Muntz, E. P., Rarefied gas dynamics, Ann. Rev. Fluid Mech., 21, 387-417 (1989) · Zbl 0662.76102
[16] Wagner, W., A convergence proof for Bird’s direct simulation Monte Carlo method for the Boltzmann equation, J. Stat. Phys., 66, 1011-1044 (1992) · Zbl 0899.76312
[17] Hadjiconstantinou, N. G.; Garcia, A. L.; Bazant, M. Z.; He, G., Statistical error in particle simulations of hydrodynamic phenomena, J. Comp. Phys., 187, 274-297 (2003) · Zbl 1047.76578
[18] Gallis, M. A.; Torczynski, J. R.; Rader, D. J., Molecular gas dynamics observations of Chapman-Enskog behavior and departures therefrom in nonequilibrium gases, Phys. Rev. E, 69, 4, 042201 (2004)
[19] Bird, G. A., Monte Carlo simulation of gas flows, Ann. Rev. Fluid Mech., 10, 11-31 (1978) · Zbl 0403.76060
[20] Bird, G. A., Recent advances and current challenges for DSMC, Comp. Math. Appl., 35, 1-14 (1998) · Zbl 0907.76059
[21] Oran, E. S.; Oh, C. K.; Cybyk, B. Z., Direct simulation Monte Carlo: recent advances and applications, Ann. Rev. Fluid Mech., 30, 403-441 (1998) · Zbl 1398.76075
[22] Ivanov, M. S.; Gimelshein, S. F., Computational hypersonic rarefied flows, Ann. Rev. Fluid Mech., 30, 469-505 (1998) · Zbl 1398.76088
[23] Rjasanow, S.; Wagner, W., Time splitting error in DSMC schemes for the spatially homogeneous inelastic Boltzmann, SIAM J. on Numer. Anal., 45, 54-67 (2007) · Zbl 1134.82038
[24] Hadjiconstantinou, N. G., Analysis of discretization in the direct simulation Monte Carlo, Phys. Fluids, 12, 2634-2638 (2000) · Zbl 1184.76203
[25] Garcia, A. L.; Bell, J. B.; Crutchfield, W. Y.; Alder, B. J., Adaptive mesh and algorithm refinement using direct simulation Monte Carlo, J. Comp. Phys., 154, 134-155 (1999) · Zbl 0954.76075
[26] Wu, J.-S.; Tseng, K.-C.; Wu, F.-Y., Parallel three-dimensional DSMC method using mesh refinement and variable time-step scheme, Comp. Phys. Commun., 162, 166-187 (2004) · Zbl 1196.65027
[27] Philippe Lacroute, Marc Levoy, Fast volume rendering using a shear-warp factorization of the viewing transformation, in: SIGGRAPH’94: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, ACM Press, New York, NY, USA, 1994, pp. 451-458. ISBN 0-89791-667-0. doi:10.1145/192161.192283; Philippe Lacroute, Marc Levoy, Fast volume rendering using a shear-warp factorization of the viewing transformation, in: SIGGRAPH’94: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, ACM Press, New York, NY, USA, 1994, pp. 451-458. ISBN 0-89791-667-0. doi:10.1145/192161.192283
[28] Matthew Moore, Jane Wilhelms, Collision detection and response for computer animation, in: SIGGRAPH’88: Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques, ACM Press, New York, NY, USA, 1988, pp. 289-298. ISBN 0-89791-275-6. doi:10.1145/54852.378528; Matthew Moore, Jane Wilhelms, Collision detection and response for computer animation, in: SIGGRAPH’88: Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques, ACM Press, New York, NY, USA, 1988, pp. 289-298. ISBN 0-89791-275-6. doi:10.1145/54852.378528
[29] Christlieb, A. J.; Krasny, R.; Verboncoeur, J. P.; Emhoff, J.; Boyd, I. D., Grid-free plasma simulation techniques, IEEE Trans. Plasma Sci., 34, 149-165 (2006)
[30] Alexander, F. J.; Garcia, A. L.; Alder, B. J., Cell size dependence of transport coefficients in stochastic particle algorithms, Phys. Fluids, 10, 1540-1542 (1998)
[31] Renka, Robert J., Algorithm 661: Qshep3d: quadratic shepard method for trivariate interpolation of scattered data, ACM Trans. Math. Softw., 14, 2, 151-152 (1988), ISSN 0098-3500. doi:10.1145/45054.214374 · Zbl 0709.65502
[32] Hernquist, L.; Katz, N., TREESPH - a unification of SPH with the hierarchical tree method, Astro. J. Supp. Series, 70 (1989)
[33] Wild, E., On Boltzmann’s equation in the kinetic theory of gases, Proc. Cambridge Philos. Soc., 47, 602-609 (1951) · Zbl 0043.43703
[34] Pareschi, L.; Caflisch, R. E., An implicit Monte Carlo method for rarefied gas dynamics, J. Comput. Phys., 154, 90-116 (1999) · Zbl 0953.76075
[35] Pareschi, Lorenzo; Russo, Giovanni, Time relaxed Monte Carlo methods for the Boltzmann equation, SIAM J. Sci. Comput., 23, 4, 1253-1273 (2001), ISSN 1064-8275. doi:10.1137/S1064827500375916 · Zbl 1028.82016
[36] Carlen, E. A.; Carvalho, M. C.; Gabetta, E., Central limit theorem for Maxwellian molecules and truncation of the Wild expansion, Commun. Pure Appl. Math., LIII, 370-397 (2000) · Zbl 1028.82017
[37] Quanhua Sun, Information preservation methods for modeling micro-scale gas flows, PhD Thesis, University of Michigan, 2003.; Quanhua Sun, Information preservation methods for modeling micro-scale gas flows, PhD Thesis, University of Michigan, 2003.
[38] G.A. Bird, The DS2V/3V program suite for DSMC calculations, in: M. Capitelli (Ed.), Rarefied Gas Dynamics: 24th International Symposium on Rarefied Gas Dynamics, American Institute of Physics Conference Series, vol. 762, May 2005, pp. 541-546. doi:10.1063/1.1941592; G.A. Bird, The DS2V/3V program suite for DSMC calculations, in: M. Capitelli (Ed.), Rarefied Gas Dynamics: 24th International Symposium on Rarefied Gas Dynamics, American Institute of Physics Conference Series, vol. 762, May 2005, pp. 541-546. doi:10.1063/1.1941592
[39] J.N. Moss, G.A. Bird, and G.N. Markelov, DSMC simulations of hypersonic flows and comparison with experiments, in: M. Capitelli (Ed.), Rarefied Gas Dynamics: 24th International Symposium on Rarefied Gas Dynamics, American Institute of Physics Conference Series, vol. 762, pp. 547-552, May 2005. doi:10.1063/1.1941593; J.N. Moss, G.A. Bird, and G.N. Markelov, DSMC simulations of hypersonic flows and comparison with experiments, in: M. Capitelli (Ed.), Rarefied Gas Dynamics: 24th International Symposium on Rarefied Gas Dynamics, American Institute of Physics Conference Series, vol. 762, pp. 547-552, May 2005. doi:10.1063/1.1941593
[40] James N. Moss, Hypersonic Flows About a 25° Sharp Cone, NASA/TM-2001-211253, December 2001.; James N. Moss, Hypersonic Flows About a 25° Sharp Cone, NASA/TM-2001-211253, December 2001.
[41] James Moss, Gerald J. LeBeau, E. Christopher, Glass, Hypersonic Shock Interactions about a 20°/65° Sharp Double Cone, NASA/TM-2002-211778, August 2002.; James Moss, Gerald J. LeBeau, E. Christopher, Glass, Hypersonic Shock Interactions about a 20°/65° Sharp Double Cone, NASA/TM-2002-211778, August 2002.
[42] Graham V. Candler, Ioannis Nompelis, Marie-Claude Druguet, Michael S. Holden, Timothy P. Wadhams, Iain D. Boyd, Wen-Lan Wang, CFD validation for hypersonic flight: hypersonic double-cone flow simulations, in: AIAA Aerospace Sciences Meeting & Exhibit, 40th, American Institute of Physics Conference Series, vol. 762, January 2002.; Graham V. Candler, Ioannis Nompelis, Marie-Claude Druguet, Michael S. Holden, Timothy P. Wadhams, Iain D. Boyd, Wen-Lan Wang, CFD validation for hypersonic flight: hypersonic double-cone flow simulations, in: AIAA Aerospace Sciences Meeting & Exhibit, 40th, American Institute of Physics Conference Series, vol. 762, January 2002.
[43] B. Chanetz, T. Pot, R. Benay, J. Moss, New test cases in low density hypersonic flow, in: A.D. Ketsdever, E.P. Muntz (Ed.), Rarefied Gas Dynamics, American Institute of Physics Conference Series, vol. 663, pp. 449-456, May 2003. doi:10.1063/1.1581581; B. Chanetz, T. Pot, R. Benay, J. Moss, New test cases in low density hypersonic flow, in: A.D. Ketsdever, E.P. Muntz (Ed.), Rarefied Gas Dynamics, American Institute of Physics Conference Series, vol. 663, pp. 449-456, May 2003. doi:10.1063/1.1581581
[44] Olson, Spencer E.; Mhaskar, Rahul R.; Raithel, Georg, Continuous propagation and energy filtering of a cold atomic beam in a long high-gradient magnetic atom guide, Phys. Rev. A, 73, 3, 033622 (2006), URL
[45] Olson, S. E.; Terraciano, M. L.; Bashkansky, M.; Dutton, Z.; Fatemi, F. K., Cold atom confinement in an all-optical dark ring trap, Phys. Rev. A, 76, 6, 061404 (2007)
[46] Spencer E. Olson, Long, high-gradient magnetic atom guide and progress towards an atom laser, PhD Thesis, University of Michigan, 2006.; Spencer E. Olson, Long, high-gradient magnetic atom guide and progress towards an atom laser, PhD Thesis, University of Michigan, 2006.
[47] Christlieb, A. J.; Krasny, R.; Verboncoeur, J. P., Efficient particle simulation of a virtual cathode using a grid-free treecode Poisson solver, IEEE Trans. Plasma Sci., 32, 384-389 (2004)
[48] Christlieb, A. J.; Krasny, R.; Verboncoeur, J. P., A treecode algorithm for simulating electron dynamics in a Penning-Malmberg trap, Comp. Phys. Commun., 164, 1-3, 306-310 (2004) · Zbl 1196.81012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.