×

Numerical simulation of the fluid dynamic effects of laser energy deposition in air. (English) Zbl 1145.76040

Summary: We perform numerical simulations of laser energy deposition in air. Local thermodynamic equilibrium conditions are assumed to apply, and the variations of thermodynamic and transport properties with temperature and pressure are accounted for. The flow field is classified into three phases: shock formation; shock propagation; and subsequent collapse of the plasma core. Each phase is studied in detail. Vorticity generation in the flow is described for short and long times. At short times, vorticity is found to be generated by baroclinic means. At longer times, a reverse flow is found to be generated along the plasma axis resulting in the rolling up of the flow field near the plasma core and enhancement of the vorticity field. Scaling analysis is performed for different amounts of laser energy deposited and different Reynolds numbers of the flow. Simulations are conducted using three different models for air based on different levels of physical complexity. The impact of these models on the evolution of the flow field is discussed.

MSC:

76N15 Gas dynamics (general theory)
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
76L05 Shock waves and blast waves in fluid mechanics
80A20 Heat and mass transfer, heat flow (MSC2010)
78A60 Lasers, masers, optical bistability, nonlinear optics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1007/s001930050107 · Zbl 0924.76047 · doi:10.1007/s001930050107
[2] Riggins, AIAA J. 37 pp 460– (1999)
[3] DOI: 10.1070/PU1966v008n05ABEH003027 · doi:10.1070/PU1966v008n05ABEH003027
[4] DOI: 10.1016/j.optlaseng.2004.07.003 · doi:10.1016/j.optlaseng.2004.07.003
[5] Keefer, Laser-Induced Plasmas and Applications (1989)
[6] DOI: 10.2514/1.14886 · doi:10.2514/1.14886
[7] DOI: 10.1007/s001930050126 · doi:10.1007/s001930050126
[8] DOI: 10.1364/AO.42.005978 · doi:10.1364/AO.42.005978
[9] DOI: 10.1017/S0022112057000403 · Zbl 0079.18605 · doi:10.1017/S0022112057000403
[10] Damon, Appl. Optics 2 pp 546– (1963)
[11] DOI: 10.2307/2006149 · Zbl 0409.76057 · doi:10.2307/2006149
[12] DOI: 10.1063/1.1722085 · Zbl 0065.19301 · doi:10.1063/1.1722085
[13] Blaisdell, Numerical simulations of compressible homogeneous turbulence (1991)
[14] Adelgren, Experimental summary report ? shock propagation measurements for Nd:YAG laser induced breakdown in quiescent air (2001)
[15] DOI: 10.1016/S0030-4018(00)00488-0 · doi:10.1016/S0030-4018(00)00488-0
[16] DOI: 10.1088/0034-4885/38/5/002 · doi:10.1088/0034-4885/38/5/002
[17] DOI: 10.1103/PhysRevLett.11.401 · doi:10.1103/PhysRevLett.11.401
[18] DOI: 10.1063/1.1732232 · doi:10.1063/1.1732232
[19] DOI: 10.1006/jcph.1998.6177 · Zbl 0936.76060 · doi:10.1006/jcph.1998.6177
[20] Root, Modeling of Post-Breakdown Phenomenon in Laser-Induced Plasma and Applications pp 69– (1989)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.