×

Weighted Berezin transform in the polydisc. (English) Zbl 1141.47028

The paper under review studies fixed points of the weighted Berezin transform on the polydisk \(\mathbb{D}^n\) for \(n\geq 2\). Many authors have studied this problem for the case \(n=1\) and for different domains in higher dimensions. For \(c>-1\), let \(\nu_c\) be a measure on \(\mathbb{C}\) defined by \(d\nu_c(z)=(c+1)(1-|z|^2)^c\,dA(z)\) so that \(\nu_c(\mathbb{D})=1\). For \(f\in L^1(\mathbb{D},\nu_c)\) and \(z\in\mathbb{D}\), the weighted Berezin transform of \(f\) is defined by \[ (B_cf)(z)=\int_\mathbb{D}(f\circ\varphi_z)\,d\nu_c, \quad\text{where }\varphi_z\in\operatorname{Aut}(\mathbb{D}). \]
If \(f\in L^1(\mathbb{D},\nu_c)\) is harmonic, then it is easy to see that \(B_cf=f\). It follows from the work of Furstenberg that the converse is true for \(f\in L^{\infty}(\mathbb{D})\). P. Ahern, M. Flores and W. Rudin [J. Funct. Anal. 111, No. 2, 380–397 (1993; Zbl 0771.32006)] proved that, for the unweighted Berezin transform on the unit ball \(B\) in \(\mathbb{C}^n\) and \(f\in L^1(B,d\nu)\), \(Bf=f\) implies that \(f\) is \(\mathcal{M}\)-harmonic if and only if \(n\leq 11\).
For simplicity, we assume \(n=2\). For \(c_1,c_2>-1\) and \(f\in L^1(\mathbb{D}^2,\nu_{c_1}\times\nu_{c_2})\), the weighted Berezin transform on \(\mathbb{D}^2\) is defined by \[ (B_{c_1,c_2}f)(z,w)=\int_\mathbb{D}\int_\mathbb{D} f(\varphi_z(x),\varphi_w(y))\,d\nu_{c_1}(x)\,d\nu_{c_2}(y). \]
Instead of harmonic functions, it is appropriate to study 2-harmonic functions on the polydisk, namely, functions that are harmonic in each variable. If \(f\in C^2(\mathbb{D}^2)\) is 2-harmonic, then again, \(B_{c_1,c_2}f=f\), and the converse is true for bounded functions on \(\mathbb{D}^2\). The main result of this paper shows that, for every \(p\in[1,\infty)\) and \(c_1,c_2>-1\), there exists \(f\in L^p(\mathbb{D}^2,\nu_{c_1} \times \nu_{c_2})\) which is not 2-harmonic but it satisfies \(B_{c_1,c_2}f=f\). The proof uses some ideas from the paper of Ahern, Flores and Rudin [loc. cit.].
The author finally shows that \(B_{c_1,c_2}f=f\) does imply that \(f\) is 2-harmonic provided the radialization of \(f\circ \psi\) belongs to \(L^{\infty}(\mathbb{D}^2)\) for every \(\psi\in\operatorname{Aut}(\mathbb{D})\), thus generalizing Lemma 2 of S. Axler and Ž. Čučković [Integral Equations Operator Theory 14, No. 1, 1–12 (1991; Zbl 0733.47027)].

MSC:

47B38 Linear operators on function spaces (general)
46E15 Banach spaces of continuous, differentiable or analytic functions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ahern, P.; Flores, M.; Rudin, W., An invariant volume-mean-value property, J. Funct. Anal., 111, 2, 380-397 (1993) · Zbl 0771.32006
[2] Axler, S.; Čučković, Z., Commuting Toeplitz operators with harmonic symbols, Integral Equations Operator Theory, 14, 1, 1-12 (1991) · Zbl 0733.47027
[3] Natan, Y. Ben; Weit, Y., Integrable harmonic functions on \(R^n\), J. Funct. Anal., 150, 2, 471-477 (1997) · Zbl 0889.43004
[4] Natan, Y. Ben; Weit, Y., Integrable harmonic functions on symmetric spaces of rank one, J. Funct. Anal., 160, 1, 141-149 (1998) · Zbl 0922.31003
[5] Benyamini, Y.; Weit, Y., Harmonic analysis of spherical functions on \(SU(1, 1)\), Ann. Inst. Fourier (Grenoble), 42, 3, 671-694 (1992) · Zbl 0763.43006
[6] Engliš, M., Functions invariant under the Berezin transform, J. Funct. Anal., 121, 1, 233-254 (1994) · Zbl 0807.47017
[7] Erdéli, A., Higher Transcendental Functions, vol. I (1953), McGraw-Hill: McGraw-Hill New York
[8] Furstenberg, H., A Poisson formula for semi-simple Lie groups, Ann. of Math. (2), 77, 335-386 (1963) · Zbl 0192.12704
[9] Furstenberg, H., Boundaries of Riemannian symmetric spaces, (Symmetric Spaces (Short Courses, Washington Univ., St. Louis, MO, 1969-1970). Symmetric Spaces (Short Courses, Washington Univ., St. Louis, MO, 1969-1970), Pure Appl. Math., vol. 8 (1972), Dekker: Dekker New York), 359-377
[10] Jevtić, M., Fixed points of an integral operator, J. Anal. Math., 91, 123-141 (2003) · Zbl 1060.45002
[11] Korányi, A., On a mean value property for hyperbolic spaces, (Representation Theory and Harmonic Analysis. Representation Theory and Harmonic Analysis, Cincinnati, OH, 1994. Representation Theory and Harmonic Analysis. Representation Theory and Harmonic Analysis, Cincinnati, OH, 1994, Contemp. Math., vol. 191 (1995), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 107-116 · Zbl 0843.22017
[12] Liu, C.; Shi, J., Invariant mean-value property and \(M\)-harmonicity in the unit ball of \(R^n\), Acta Math. Sin. (Engl. Ser.), 19, 1, 187-200 (2003) · Zbl 1031.31001
[13] Rudin, W., Function Theory in Polydiscs (1969), W.A. Benjamin Inc.: W.A. Benjamin Inc. New York-Amsterdam · Zbl 0177.34101
[14] Rudin, W., Function Theory in the Unit Ball of \(C^n (1980)\), Springer-Verlag: Springer-Verlag New York · Zbl 0495.32001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.