×

Quantum properties of a cyclic structure based on tripolar fields. (English) Zbl 1107.81345

Summary: The properties of cyclic structures (toroidal oscillators) based on classical tripolar (colour) fields are discussed, in particular, those of a cyclic structure formed of three colour singlets spinning around a ring-closed axis. It is shown that the helicity and handedness of this structure can be related to the quantum properties of the electron. The symmetry of this structure corresponds to the complete cycle of \(\frac 23\pi\)-rotations of its constituents, which leads to the exact overlapping of the paths of its three complementary coloured constituents, making the system dynamically colourless. Its gyromagnetic ratio is estimated to be \(g \approx 2\), which agrees with the Landé \(g\)-factor for the electron.

MSC:

81V22 Unified quantum theories
81V10 Electromagnetic interaction; quantum electrodynamics
81V15 Weak interaction in quantum theory
81R40 Symmetry breaking in quantum theory
81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Landau, L. D.; Lifshitz, E. M., Quantum Mechanics: Non-relativistic Theory (introduction) (1981), Butterworth-Heinemann: Butterworth-Heinemann Oxford, England · Zbl 0178.57901
[2] Penrose, R., Quantum computation, entanglement and state reduction, Philos. Trans. R. Soc. Lond. A, 356, 1927-1939 (1998) · Zbl 1152.81659
[3] Dragoman, D.; Dragoman, M., Quantum-Classical Analogies (2004), Springer: Springer Berlin, Heidelberg · Zbl 1093.81001
[4] Prigogine, I., Non-equilibrium Statistical Mechanics (1962), Wiley-Interscience Publ.: Wiley-Interscience Publ. New York · Zbl 0106.43301
[5] Heslot, A., Quantum mechanics as a classical theory, Phys. Rev. D, 31, 1341-1348 (1985)
[6] Joos, E.; Zeh, H. D.; Kiefer, C.; Giulini, C.; Kupsch, K.; Stamatescu, I.-O., Decoherence and the Appearance of a Classical World in Quantum Theory (2003), Springer: Springer Berlin, Heidelberg · Zbl 0855.00003
[7] Gottwald, G. A.; Melbourne, I., Testing for chaos in deterministic systems with noise, Physica D, 212, 100-110 (2005) · Zbl 1097.37024
[8] G. ’t Hooft, How does God plays dice? arxiv.org/hep-th/0104219; G. ’t Hooft, How does God plays dice? arxiv.org/hep-th/0104219 · Zbl 1026.81004
[9] Prezhdo, O. V., Classical mapping of second-order quantized Hamiltonian dynamics, J. Chem. Phys., 117, 2995-3002 (2002)
[10] Pesci, A. I.; Goldstein, R. E.; Uys, H., Mapping of the classical kinetic balance equations onto the Schrödinger equation, Nonlinearity, 18, 211-226 (2005) · Zbl 1086.35083
[11] ’t Hooft, G., Quantum gravity as a dissipative deterministic system, Classical Quantum Gravity, 16, 3263-3279 (1999) · Zbl 0937.83015
[12] Gozzi, E.; Reuter, M.; Thacker, W. D., Symmetries of the classical path integral on a generalized phase-space manifold, Phys. Rev. D, 46, 757-765 (1992)
[13] Fredkin, E., An information process based on reversible cellular automata, Physica D, 45, 254-270 (1990) · Zbl 0719.68044
[14] C.P. Sun, X.F. Liu, S.X. Yu, Quotend construction of ’t Hooft’s quantum equivalence classes, arxiv.org/hep-th/0006105; C.P. Sun, X.F. Liu, S.X. Yu, Quotend construction of ’t Hooft’s quantum equivalence classes, arxiv.org/hep-th/0006105
[15] Griffiths, D., Introduction to Elementary Particles (1987), Wiley and Sons: Wiley and Sons Chichester
[16] Dirac, P. A.M., Theory of radiating electrons, Proc. Roy. Soc. A, 167, 148-169 (1938) · Zbl 0023.42702
[17] Foldy, L. L., Neutron-electron interaction, Rev. Modern Phys., 30, 471-481 (1958)
[18] Kerner, B. S.; Osipov, V. V., Autosolitons: A New Approach to Problems of Self-Organization and Turbulence (1994), Kluwer: Kluwer Dordrecht
[19] Wheeler, J. A., Geometrodynamics (1962), Academic Press: Academic Press New York · Zbl 0124.22207
[20] Ambjorn, J.; Jurkewicz, J.; Loll, R., The universe from scratch, Contemp. Phys., 47, 102-117 (2006)
[21] Sivaram, C., Fundamental interactions in the early universe, Internat. J. Theoret. Phys., 33, 2407-2413 (1994)
[22] Alimohammadi, M., Some correlators of SU \((3)_3\) WZW models on higher-genus Riemann surfaces, Modern Phys. Lett. A, 9, 381-398 (1994) · Zbl 1021.81778
[23] Bystrovic, B.; Jackiw, R.; Li, H.; Nair, V. P.; Pi, S.-Y., Non-Abelian fluid dynamics in Lagrangian formulation, Phys. Rev. D, 67, 025013 (2003)
[24] Dai, J.; Nair, V. P., Color Skyrmions in the quark-gluon plasma, Phys. Rev. D, 74, 085014 (2006)
[25] Osenda, O.; Serra, P.; Tamarit, F. A., Non-equilibrium properties of small Lennard-Jones clusters, Physica D, 168-169, 336-340 (2002) · Zbl 1001.82072
[26] Qin, W.; Chen, G., Coupling schemes for cluster synchronization in coupled Josephson equations, Physica D, 197, 375-391 (2004) · Zbl 1066.34046
[27] Yershov, V. N., Equilibrium configurations of tripolar charges, Few-Body Syst., 37, 79-106 (2005)
[28] Brizhik, L. S.; Eremko, A. A.; Piette, B.; Zakrzewski, W., Electron self-trapping on a nanocircle, Physica D, 218, 36-55 (2006) · Zbl 1105.82016
[29] Igarashi, A.; Yamada, H. S., Quantum dynamics and delocalization in coherently driven one-dimensional double-well system, Physica D, 221, 146-156 (2006) · Zbl 1130.37416
[30] Cox, S. M.; Matthews, P. C., New instabilities in two-dimensional rotating convection and magnetoconvection, Physica D, 149, 210-229 (2001) · Zbl 0974.35091
[31] Liu, W.; Haller, G., Inertial manifolds and completeness of eigenmodes for unsteady magnetic dynamos, Physica D, 194, 297-319 (2004) · Zbl 1098.76648
[32] White, R. B., The Theory of Toroidally Confined Plasmas (2001), Imperial College Press: Imperial College Press London · Zbl 0990.76002
[33] Kleman, M., Lines and Walls (1983), Wiley and Sons: Wiley and Sons Chichester
[34] Wigner, E., On the interaction of electrons in metals, Phys. Rev., 46, 1002-1011 (1934) · JFM 60.0785.02
[35] Yannouleas, C.; Landman, U., Spontaneous symmetry breaking in single and molecular quantum dots, Phys. Rev. Lett., 82, 5325-5328 (1999)
[36] Walker, B., Precision measurement of strong field double ionization of helium, Phys. Rev. Lett., 73, 1227-1230 (1994)
[37] Schlagheck, P.; Buchleitner, A., Stable classical configurations in strongly driven helium, Physica D, 131, 110-124 (1999) · Zbl 1040.81564
[38] Dirac, P. A.M., The quantum theory of the electron, Proc. Roy. Soc. A. Proc. Roy. Soc. A, Proc. Roy. Soc. A, 118, 351-361 (1928) · JFM 54.0973.02
[39] Kovachev, L. M., Vortex solutions of the nonlinear optical Maxwell-Dirac equations, Physica D, 190, 78-92 (2004) · Zbl 1052.78015
[40] Allen, H. S., The case for a ring-electron, Proc. Phys. Soc. Lond., 31, 49-68 (1919)
[41] Compton, A., The size and shape of the electron, Phys. Rev., 14, 247-259 (1919)
[42] Burinskii, A., Structure of spinning particle suggested by gravity, supergravity and low energy string theory, Czechoslovak J. Phys., 50, Suppl. S1, 201-206 (2000)
[43] Lortz, D., On the structure of the electron, Z. Naturforsch. A, 58, 491-493 (2003)
[44] Landé, A., New Foundations of Quantum Physics (1965), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0152.46005
[45] Komatsu, N.; Abe, T., Numerical irreversibility in time-reversible molecular dynamics simulation, Physica D, 195, 391-397 (2004) · Zbl 1054.81039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.