×

zbMATH — the first resource for mathematics

On vertex reconstructions for cell-centered finite volume approximations of 2D anisotropic diffusion problems. (English) Zbl 1119.65115

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
76M12 Finite volume methods applied to problems in fluid mechanics
76R50 Diffusion
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1137/S1064827595293582 · Zbl 0951.65080 · doi:10.1137/S1064827595293582
[2] DOI: 10.1137/S1064827595293594 · Zbl 0951.65082 · doi:10.1137/S1064827595293594
[3] DOI: 10.1137/S0895479800375370 · Zbl 1017.65017 · doi:10.1137/S0895479800375370
[4] DOI: 10.1016/0045-7930(94)90023-X · Zbl 0806.76053 · doi:10.1016/0045-7930(94)90023-X
[5] DOI: 10.1137/0729075 · Zbl 0763.65085 · doi:10.1137/0729075
[6] DOI: 10.1137/0724050 · Zbl 0634.65105 · doi:10.1137/0724050
[7] Ben-Israel A., Generalized Inverses: Theory and Applications (2003)
[8] DOI: 10.1007/s00211-003-0460-2 · Zbl 1033.65095 · doi:10.1007/s00211-003-0460-2
[9] DOI: 10.1137/S1064827595289303 · Zbl 0959.76039 · doi:10.1137/S1064827595289303
[10] DOI: 10.1142/S0218202598000317 · Zbl 0939.65123 · doi:10.1142/S0218202598000317
[11] DOI: 10.1145/513001.513007 · Zbl 1070.65568 · doi:10.1145/513001.513007
[12] Bertolazzi E., Math. Mod. Meth. Appl. Sci. 8 pp 1235–
[13] DOI: 10.1016/j.apnum.2003.12.008 · Zbl 1146.76619 · doi:10.1016/j.apnum.2003.12.008
[14] DOI: 10.1016/j.apnum.2004.10.003 · Zbl 1086.76045 · doi:10.1016/j.apnum.2004.10.003
[15] Bertolazzi E., SIAM J. Numer. Anal.
[16] DOI: 10.1007/BF01385651 · Zbl 0731.65093 · doi:10.1007/BF01385651
[17] DOI: 10.1137/0728022 · Zbl 0729.65086 · doi:10.1137/0728022
[18] DOI: 10.1142/S0218202504003313 · Zbl 1127.65319 · doi:10.1142/S0218202504003313
[19] Ciarlet P. G., The Finite Element Method for Elliptic Problems (1980) · Zbl 0511.65078
[20] DOI: 10.1051/m2an:1999149 · Zbl 0937.65116 · doi:10.1051/m2an:1999149
[21] DOI: 10.1137/S0036142900368873 · Zbl 1036.65084 · doi:10.1137/S0036142900368873
[22] R. Eymard, T. GollouĂ«t and R. Herbin, Handbook of numerical analysis VII (North-Holland, 2000) pp. 713–1020.
[23] Feistauer M., Mathematical and Computational Methods for Compressible Flow (2003) · Zbl 1028.76001
[24] DOI: 10.1007/BF02241218 · Zbl 0649.65052 · doi:10.1007/BF02241218
[25] DOI: 10.1006/jcph.2000.6466 · Zbl 0949.65101 · doi:10.1006/jcph.2000.6466
[26] Hyman J., J. Comput. Phys. 129 pp 383–
[27] DOI: 10.1006/jcph.1996.5633 · Zbl 0881.65093 · doi:10.1006/jcph.1996.5633
[28] DOI: 10.1016/S0168-9274(97)00097-4 · Zbl 1005.65024 · doi:10.1016/S0168-9274(97)00097-4
[29] DOI: 10.1016/S0898-1221(97)00009-6 · Zbl 0868.65006 · doi:10.1016/S0898-1221(97)00009-6
[30] Jayantha P. A., J. Comput. Math. 23 pp 1–
[31] DOI: 10.1142/S0218202505000340 · Zbl 1070.65075 · doi:10.1142/S0218202505000340
[32] Li R. H., Generalized Difference Methods for Differential Equations (2000)
[33] DOI: 10.1016/j.advwatres.2004.08.008 · doi:10.1016/j.advwatres.2004.08.008
[34] DOI: 10.1137/S1064827595290711 · Zbl 0915.65111 · doi:10.1137/S1064827595290711
[35] Quarteroni A., Numerical Approximation of Partial Differential Equations (1994) · Zbl 0803.65088
[36] Tikhonov A. N., Zh. Vychisl. Mat. Mat. Fiz. 1 pp 5–
[37] Tikhonov A. N., Zh. Vychisl. Mat. Mat. Fiz. 2 pp 812–
[38] DOI: 10.1137/0725025 · Zbl 0644.65062 · doi:10.1137/0725025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.