×

Zero density lower bounds in topology optimization. (English) Zbl 1120.74711

Summary: In topology optimization, the notion of topology is introduced into the analysis by assigning density design variables to positions throughout the design domain. The standard practice is to set the lower bound values of the density design variables so that they are small but nonzero values. The intent of the nonvanishing lower bound has been to ensure that the (tangent) stiffness matrix of the finite element analysis remains nonsingular, and the lower bound values are selected so that the low density elements are structurally insignificant to the extent that the structural analysis can be performed. However, from a pragmatic point of view, we should desire that void material be represented by regions of zero density elements. Here, a simple algorithm that does not requiring remeshing and accommodates the zero density design variable values is presented, and the ramifications of the zero density lower bounds on the topology optimization are discussed.

MSC:

74P15 Topological methods for optimization problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bendsøe, M. P.; Sigmund, O., Topology Optimization: Theory, Methods and Applications (2003), Springer: Springer New York · Zbl 0957.74037
[2] Björck, Åke, Numerical methods for least squares problems (1996), SIAM: SIAM Philadelphia · Zbl 0847.65023
[3] Hansen, P. C., Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion (1998), SIAM: SIAM Philadelphia
[4] Campbell, S. L.; Meyer, C. D., Generalized Inverses of Linear Transformations (1979), Dover: Dover New York · Zbl 0417.15002
[5] Kočvara, M., Topology optimization with displacement constraints: a bilevel programming approach, Structural Optimization, 14, 256-263 (1997)
[6] Washizawa, T.; Asai, A.; Yoshikawa, N., A new approach for solving singular systems in topology optimization using Krylov subspace methods, Structural and Multidisciplinary Optimization, 28, 5, 330-339 (2004)
[7] Haftka, R. T., Simultaneous analysis and design, AIAA Journal, 23, 7, 1099-1103 (1985) · Zbl 0587.73135
[8] M.P. Bendsøe, A. Ben-Tal, R.T. Haftka, New displacement-based methods for optimal truss topology design, in: Proceedings of the 32nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, number AIAA-91-1215, Part 3, Baltimore, MD, April 8-10, 1991, pp. 684-696.; M.P. Bendsøe, A. Ben-Tal, R.T. Haftka, New displacement-based methods for optimal truss topology design, in: Proceedings of the 32nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, number AIAA-91-1215, Part 3, Baltimore, MD, April 8-10, 1991, pp. 684-696.
[9] Bendsøe, M. P.; Ben-Tal, A.; Zowe, J., Optimization methods for truss geometry and topology design, Structural Optimization, 7, 141-159 (1994)
[10] S. Sankaranarayanan, R.T. Haftka, R.K. Kapania, Truss topology optimization with simultaneous analysis and design, in: Proceedings of the 33rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, number AIAA-92-2315, Part 5, Dallas, TX, April 13-15, 1992, pp. 2576-2585.; S. Sankaranarayanan, R.T. Haftka, R.K. Kapania, Truss topology optimization with simultaneous analysis and design, in: Proceedings of the 33rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, number AIAA-92-2315, Part 5, Dallas, TX, April 13-15, 1992, pp. 2576-2585.
[11] Clarke, F. H., Optimization and Nonsmooth Analysis (1990), Society for Industrial and Applied Mechanics: Society for Industrial and Applied Mechanics Philadelphia · Zbl 0727.90045
[12] Mäkelä, M. M.; Neittaanmäki, P., Nonsmooth Optimization: Analysis and Algorithms with Applications to Optimal Control (1992), World Scientific: World Scientific New Jersey · Zbl 0757.49017
[13] Achtziger, W.; Bendsøe, M.; Ben-Tal, A.; Zowe, J., Equivalent displacement based formulations for maximum strength truss topology design, Impact of Computing in Science and Engineering, 4, 315-345 (1992) · Zbl 0769.73054
[14] Ben-Tal, A.; Kočvara, M.; Zowe, J., Two nonsmooth approaches to simultaneous geometry and topology design of trusses, (Bendsøe, M. P.; Soares, C. A.M., Topology Design of Structures, NATO ASI Series (1993), Kluwer Academic Publishers), 31-42
[15] Achtziger, W., Multiple-load truss topology and sizing optimization: some properties of minimax compliance, Journal of Optimization Theory and Applications, 98, 2, 255-280 (1998) · Zbl 0915.73036
[16] Pedersen, N. L., Maximization of eigenvalues using topology optimization, Structural and Multidisciplinary Optimization, 20, 2-11 (2000)
[17] Buhl, T.; Pedersen, C. B.W.; Sigmund, O., Stiffness design of geometrically nonlinear structures using topology optimization, Structural and Multidisciplinary Optimization, 19, 93-104 (2000)
[18] Bruns, T. E.; Tortorelli, D. A., An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms, International Journal for Numerical Methods in Engineering, 57, 10, 1413-1430 (2003) · Zbl 1062.74589
[19] Svanberg, K., Method of moving asymptotes – a new method for structural optimization, International Journal for Numerical Methods in Engineering, 24, 2, 359-373 (1987) · Zbl 0602.73091
[20] Bruns, T. E.; Tortorelli, D. A., Topology optimization of nonlinear elastic structures and compliant mechanisms, Computer Methods in Applied Mechanics and Engineering, 190, 26-27, 3443-3459 (2001) · Zbl 1014.74057
[21] Strang, G., Linear Algebra and its Applications (1988), Harcourt Brace Jovanovich: Harcourt Brace Jovanovich San Diego
[22] Press, W. H.; Teukolsky, S. A.; Vellerling, W. T.; Flannery, B. P., Numerical Recipes in Fortran 77: The Art of Scientific Computing (1989), Cambridge University Press: Cambridge University Press New York
[23] Haug, E. J.; Choi, K. K.; Komkov, V., Design Sensitivity Analysis of Structural Systems (1986), Academic Press: Academic Press New York · Zbl 0618.73106
[24] Haftka, R. T.; Gürdal, Z.; Kamat, M. P., Elements of Structural Optimization (1990), Kluwer Academic Publishers: Kluwer Academic Publishers Boston · Zbl 0702.73047
[25] Seyranian, A. P.; Lund, E.; Olhoff, N., Multiple eigenvalues in structural optimization problems, Structural Optimization, 8, 207-227 (1994)
[26] Berry, M., Large scale singular value computations, International Journal of Supercomputer Applications, 6, 1, 13-49 (1992)
[27] Lehoucq, R. B.; Sorensen, D. C.; Yang, C., ARPACK Users Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods (1998), SIAM: SIAM Philadelphia · Zbl 0901.65021
[28] Anderson, E.; Bai, Z.; Bischof, C.; Blackford, S.; Demmel, J.; Dongarra, J.; Du Croz, J.; Greenbaum, A.; Hammarling, S.; McKenney, A.; Sorensen, D., LAPACK Users’ Guide (1999), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia · Zbl 0934.65030
[29] Bruyneel, M.; Duysinx, R., Note on topology optimization of continuum structures including self-weight, Structural and Multidisciplinary Optimization, 29, 4, 245-256 (2005)
[30] Zienkiewicz, O. C.; Taylor, R. L., The Finite Element Method, Basic Formulations and Linear Problems, vol. 1 (1989), McGraw-Hill: McGraw-Hill New York · Zbl 0979.74002
[31] Glowinski, R.; Pan, T.-W.; Periaux, J., A fictitious domain method for Dirichlet problem and applications, Computer Methods in Applied Mechanics and Engineering, 111, 283-303 (1994) · Zbl 0845.73078
[32] T.E. Bruns, Topology optimization by penalty (TOP) method, in: Proceedings of the 6th World Congress of Structural and Multidisciplinary Optimization, Rio de Janeiro, Brazil, May 30-June 3, 2005.; T.E. Bruns, Topology optimization by penalty (TOP) method, in: Proceedings of the 6th World Congress of Structural and Multidisciplinary Optimization, Rio de Janeiro, Brazil, May 30-June 3, 2005. · Zbl 1173.74373
[33] MATLAB. The MathWorks, Inc., Version 6.5.0.180913a Release 13, 1984-2002.; MATLAB. The MathWorks, Inc., Version 6.5.0.180913a Release 13, 1984-2002.
[34] Buhl, T., Simultaneous topology optimization of structure and supports, Structural and Multidisciplinary Optimization, 23, 336-346 (2002)
[35] Golub, G. H.; Loan, C. F.V., Matrix Computations (1989), The John Hopkins University Press: The John Hopkins University Press Baltimore · Zbl 0733.65016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.