×

zbMATH — the first resource for mathematics

The monotonicity of the permanent function. (English) Zbl 0748.15007
The author shows that for each positive integer \(n\) there exists \(\alpha_ n\in(0,1)\) such that \(\text{per}[(1-\theta)J_ n+\theta S]\leq\text{per} S\) for all \(0\leq\theta\leq\alpha_ n\) and all \(n\times n\) doubly stochastic matrices \(S\).
MSC:
15A15 Determinants, permanents, traces, other special matrix functions
15B51 Stochastic matrices
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Brualdi, R.; Newman, M., Inequalities for the permanental minors of nonnegative matrices, Canad. J. math., 18, 608-615, (1966) · Zbl 0145.03803
[2] Chang, D.K., Notes on permanents of doubly stochastic matrices, Lin. multilin. alg., 14, 349-356, (1983) · Zbl 0531.15005
[3] Friedland, S.; Minc, H., Monotonicity of permanents of doubly stochastic matrices, Lin. multilin. alg., 6, 227-231, (1978) · Zbl 0408.15016
[4] Hwang, S.G., Maximum permanents on certain classes of nonnegative matrices, Lin. alg. applcs., 132, 103-113, (1990) · Zbl 0701.15004
[5] Hwang, S.G., The monotonicty and the doković conjectures on permanents of doubly stochastic matrices, Lin. alg. applcs., 79, 127-151, (1989)
[6] Knopp, P.; Sinkhorn, R., Minimum permanents of doubly stochastic matrices with at least one zero entry, Lin. multilin. alg., 11, 351-355, (1982) · Zbl 0495.15016
[7] Phuong, V.A., Behavior of the permanent of a special class of doubly stochastic matrices, Lin. multilin. alg., 9, 227-229, (1980) · Zbl 0449.15008
[8] Wang, E.T.H., On a conjecture of Marcus and minc, Lin. multilin. alg., 5, 145-148, (1977) · Zbl 0367.15007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.