×

zbMATH — the first resource for mathematics

The interference of two passive scalars in a homogeneous isotropic turbulent field. (English) Zbl 0673.76060
Summary: We study the interference of two scalars diffusing in homogeneous isotropic turbulence. We use the method described by the authors in J. Comput. Phys. 79, No.2, 317-335 (1988; Zbl 0656.76053) to calculate the cross-correlation coefficient \(\rho\) between the concentration fluctuations of two sources. The dependence of \(\rho\) on the source separation, shapes and sizes, and its time evolution is calculated for different points in space. Results for the case of two line sources are compared with data from wind tunnel experiments, and seen to be in good agreement. At the centreline \(\rho\) is shown to increase as overlap of the two plumes increases. \(\rho\) may be either negative or positive depending on the separation between the two sources.

MSC:
76F05 Isotropic turbulence; homogeneous turbulence
76M99 Basic methods in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1256/smsqj.46626 · doi:10.1256/smsqj.46626
[2] Durbin, Bull. Am. Phys. Soc. 27 pp 1180– (1982)
[3] DOI: 10.1017/S0022112080001152 · Zbl 0457.76042 · doi:10.1017/S0022112080001152
[4] DOI: 10.1017/S0022112084001646 · doi:10.1017/S0022112084001646
[5] DOI: 10.1017/S0022112087001940 · Zbl 0644.76065 · doi:10.1017/S0022112087001940
[6] DOI: 10.1256/smsqj.47212 · doi:10.1256/smsqj.47212
[7] Taylor, Proc. Lond. Math. Soc. 20 pp 196– (1921)
[8] DOI: 10.1017/S0022112086003142 · Zbl 0608.76045 · doi:10.1017/S0022112086003142
[9] DOI: 10.1256/smsqj.46006 · doi:10.1256/smsqj.46006
[10] DOI: 10.1016/0021-9991(88)90019-8 · Zbl 0656.76053 · doi:10.1016/0021-9991(88)90019-8
[11] DOI: 10.1007/BF00120895 · doi:10.1007/BF00120895
[12] DOI: 10.1017/S0022112088001247 · Zbl 0642.76068 · doi:10.1017/S0022112088001247
[13] DOI: 10.1175/1520-0450(1979)018 2.0.CO;2 · doi:10.1175/1520-0450(1979)018 · doi:2.0.CO;2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.