×

zbMATH — the first resource for mathematics

Construction of nonlinear sigma-models in two and higher space- dimensions. (English) Zbl 0484.55006

MSC:
55P99 Homotopy theory
53C80 Applications of global differential geometry to the sciences
81T99 Quantum field theory; related classical field theories
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Belavin, A.A.; Polyakov, A.M., JETP lett., 22, 245-248, (1975)
[2] Duff, M.J.; Isham, G.J., Nucl. phys. B, 108, 130-140, (1976)
[3] Honerkamp, J.; Patani, A.; Schlinwein, M.; Shafi, Q., Nuovo cimento lett., 15, 97-100, (1976)
[4] Butera, P.; Enriotti, M., Nuovo cimento lett., 21, 225-226, (1978)
[5] Deser, S.; Duff, M.J.; Isham, C.J., Nucl. phys. B, 114, 29-44, (1976)
[6] Skyrme, T.H.R., Nucl. phys., 31, 556-559, (1962)
[7] Pak, N.K.; Tze, H.C., Ann. phys. (N.Y.), 117, 164-194, (1979)
[8] Nicole, D.A., J. phys. G, 4, 1363-1369, (1978)
[9] Vakulenko, A.P.; Kapitansky, L.V., Dokl. akad. nauk SSSR, 246, 840-844, (1979)
[10] Enz, V., J. math. phys., 18, 347-353, (1977)
[11] Felsager, B.; Leinaas, J.M., Phys. lett. B, 94, 192-194, (1980)
[12] Kafiev, Yu.N., Phys. lett. B, 96, 337-340, (1980)
[13] Kafiev, Yu.N., Nucl. phys. B, 178, 177-196, (1981)
[14] Patani, A.; Schlinwein, M.; Shafi, Q., J. phys. A: math. gen., 9, 1513-1519, (1976)
[15] Shkliarsky, D.O.; Chentsov, N.N.; Yglom, I.M., (), 42
[16] Pontrjagin, L.C., (), 103
[17] Vladimirov, S.A., Teor. mat. fiz., 44, 410-413, (1980)
[18] Derrick, G.H., J. math. phys., 5, 1252-1254, (1964)
[19] Cartan, E., Leçons sur la géométrie des espaces de Riemann, (), 19 · JFM 54.0755.01
[20] Bourbaki, N., “les structures fondamentales de l’analyse“, livre II, “algebra”, (1961), Hermann Paris
[21] Rouhani, S., Nucl. phys. B, 169, 430-444, (1980)
[22] Williams, J.G., Canad. J. phys., 57, 590-592, (1979)
[23] \scA. Kundu and Yu. P. Rybakov, J. Phys. A, in press.
[24] Balachandran, A.P.; Stern, A.; Trahan, G., Phys. rev. D, 19, 2416-2425, (1979)
[25] D’Adda, A.; Lüscher, M.; Vecchia, P.D., Nucl. phys. B, 146, 63-76, (1978)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.