×

zbMATH — the first resource for mathematics

Extended diffeomorphism algebras in (quantum) gravitational physics. (English) Zbl 1080.83516
MSC:
83C45 Quantization of the gravitational field
70G65 Symmetries, Lie group and Lie algebra methods for problems in mechanics
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Polyakov A. M., Mod. Phys. Lett. A 11 pp 893–
[2] DOI: 10.1007/BF01218156 · Zbl 0677.22012
[3] DOI: 10.1142/S0217751X97001869 · Zbl 1161.81423
[4] DOI: 10.1088/0305-4470/32/42/305 · Zbl 0966.81054
[5] DOI: 10.1063/1.1703702 · Zbl 0095.22903
[6] Woodhouse N. M. J., Geometric Quantization (1991) · Zbl 0907.58026
[7] Fuks D. B., Cohomology of Infinite Dimensional Algebras (1986) · Zbl 0667.17005
[8] Dzhumadil’daev A., Z. Phys. C 72 pp 509–
[9] DOI: 10.1103/PhysRev.101.1597 · Zbl 0070.22102
[10] DOI: 10.1103/RevModPhys.61.561
[11] DOI: 10.1063/1.1724208 · Zbl 0098.25804
[12] DOI: 10.1007/BF00672649 · Zbl 0568.58010
[13] DOI: 10.1007/BF01221252 · Zbl 0637.22011
[14] Serre J. P., Lie Algebras and Lie Groups (1965) · Zbl 0132.27803
[15] DOI: 10.1007/BF02101873 · Zbl 0749.22007
[16] DOI: 10.1063/1.523215 · Zbl 0368.53032
[17] DOI: 10.1088/0264-9381/8/1/010 · Zbl 0716.53067
[18] DOI: 10.1088/0264-9381/18/5/101 · Zbl 1123.83306
[19] DOI: 10.1016/0003-4916(74)90404-7 · Zbl 0328.70016
[20] DOI: 10.1007/BF01211590 · Zbl 0584.53039
[21] DOI: 10.1016/S0920-5632(97)00348-4 · Zbl 0976.83532
[22] DOI: 10.1016/0003-4916(91)90046-B
[23] DOI: 10.1142/S0217732302006941 · Zbl 1083.81562
[24] DOI: 10.1007/s002200050563 · Zbl 0936.17025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.