×

Decoherence, wave function collapses and non-ordinary statistical mechanics. (English) Zbl 1103.82311

Summary: We consider a toy model of pointer interacting with a 1/2-spin system, whose \(\sigma_x\) variable is measured by the environment, according to the prescription of decoherence theory. If the environment measuring the variable \(\sigma_x\) yields ordinary statistical mechanics, the pointer sensitive to the 1/2-spin system undergoes the same, exponential, decoherence regardless of whether real collapses or an entanglement with the environment, mimicking the effect of real collapses, occur. In the case of non-ordinary statistical mechanics the occurrence of real collapses make the pointer still relax exponentially in time, while the equivalent picture in terms of reduced density matrix generates an inverse power law decoherence.

MSC:

82C03 Foundations of time-dependent statistical mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Penrose, R., Shadows of the mind (1994), Oxford University Press: Oxford University Press Oxford
[2] Tessieri, L.; Vitali, D.; Grigolini, P., Quantum jumps as an objective process of nature, Phys. Rev. A, 51, 4404-4413 (1995)
[3] Ghirardi, G. C.; Rimini, A.; Weber, T., Unified dynamics for microscopic and macroscopic systems, Phys. Rev. D, 34, 470-491 (1986) · Zbl 1222.82047
[4] Ghirardi, G. C.; Pearle, P.; Rimini, A., Markov processes in Hilbert space and continuous spontaneous localizations of systems of identical particles, Phys. Rev. A, 42, 78-89 (1990)
[5] Zeh, H. D., On the interpretation of measurement in quantum theory, Found. Phys., 1, 69-76 (1970)
[6] Tegmark M, Wheeler JA. 100 years of quantum mysteries. Sci Am 2001;68-75; Tegmark M, Wheeler JA. 100 years of quantum mysteries. Sci Am 2001;68-75
[7] Ord, G. N.; Gualtieri, J. A., A realistic setting for Feynman paths, Chaos, Solitons & Fractals, 14, 929-935 (2002) · Zbl 1037.81004
[8] El Naschie, M. L., Time symmetry breaking, duality and Cantorian space-time, Chaos, Solitons & Fractals, 7, 499-518 (1996) · Zbl 1080.81514
[9] El Naschie, M. L., Wild topology, hyperbolic geometry and fusion algebra of high energy particle physics, Chaos, Solitons & Fractals, 13, 1935-1945 (2002) · Zbl 1024.81055
[10] Nicolis, J. S.; Nicolis, G.; Nicolis, C., Nonlinear dynamics and the two-slit delayed experiment, Chaos, Solitons & Fractals, 12, 407-416 (2001) · Zbl 1066.37503
[11] Khaetskii, A. V.; Loss, D.; Glazman, L., Electron spin decoherence in quantum dots due to interaction with nuclei, Phys. Rev. Lett., 88, 186802-186804 (2002)
[12] Diósi, L.; Gisin, N.; Strunz, W. T., Non-Markovian quantum state diffusion, Phys. Rev. A, 58, 1699-1712 (1998)
[13] Allegrini, P.; Grigolini, P.; West, B. J., Dynamical approach to Levy processes, Phys. Rev. E, 54, 4760-4767 (1996)
[14] Grigolini, P.; Pala, M. G.; Palatella, L., Quantum measurement and entropy production, Phys. Lett. A, 285, 49-54 (2001) · Zbl 0969.82543
[15] Lindblad, G., On the generators of quantum dynamical semigroups, Commun. Math. Phys., 48, 119-130 (1976) · Zbl 0343.47031
[16] Geisel, T.; Nierwetberg, J.; Zacherl, A., Accelerated diffusion in Josephson junctions and related chaotic systems, Phys. Rev. Lett., 54, 616-619 (1985)
[17] Zumofen, G.; Klafter, J., Scale-invariant motion in intermittent chaotic systems, Phys. Rev. E, 47, 851-863 (1993) · Zbl 0791.60102
[18] Grigolini, P., Anomalous diffusion, spontaneous localizations and the correspondence principle, Lect. Notes Phys., 457, 101-119 (1995) · Zbl 0960.81509
[19] Grigolini, P., Theoretical foundations, Adv. Chem. Phys., 62, 1-27 (1985)
[20] Beck, C., Dynamical foundations of nonextensive statistical mechanics, Phys. Rev. Lett., 87, 180601-180604 (2001)
[21] Bologna, M.; Grigolini, P.; Riccardi, J., Lévy diffusion as an effect of sporadic randomness, Phys. Rev. E, 60, 6435-6442 (1999)
[22] Weiss, G. H., Aspects and applications of the random walk (1994), North-Holland: North-Holland Amsterdam, p. 56 · Zbl 0925.60079
[23] Gnedenko, B. V.; Kolmogorov, A. N., Limit distributions for sums of independent random variables (1954), Addison-Wesley: Addison-Wesley Reading · Zbl 0056.36001
[24] Annnunziato, M.; Grigolini, P., Stochastic versus dynamic approach to Lévy statistics in the presence of an external perturbation, Phys. Lett. A, 269, 31-39 (2000) · Zbl 1115.82317
[25] Vitali, D.; Grigolini, P., Nonlinear effects in quantum dissipation, Phys. Rev. A, 42, 7091-7106 (1990)
[26] Berman GP, Kamenev DI, Tsifrinovich VI, Stationary cantilever vibrations in oscillating-cantilever-driven adiabatic reversals: magnetic-resonance-force-microscopic technique. Phys Rev A 2002;66:023405(1-6); Berman GP, Kamenev DI, Tsifrinovich VI, Stationary cantilever vibrations in oscillating-cantilever-driven adiabatic reversals: magnetic-resonance-force-microscopic technique. Phys Rev A 2002;66:023405(1-6)
[27] Bologna, M.; Grigolini, P.; West, B. J., Strange kinetics: conflict between density and trajectory description, Chem. Phys., 284, 115-128 (2002)
[28] Petrosky, T.; Prigogine, I., Poincaré resonances and the extension of classical dynamics, Chaos, Solitons & Fractals, 7, 441-497 (1996) · Zbl 1080.82550
[29] El Naschie, M. S., Kolmogorov turbulence Apollonian fractals and the Cantorian model of quantum spacetime, Chaos, Solitons & Fractals, 7, 147-149 (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.