zbMATH — the first resource for mathematics

Implicit solution of uncertain volatility/transaction cost option pricing models with discretely observed barriers. (English) Zbl 1072.91578
Summary: Option pricing models with uncertain volatility/transaction costs give rise to a nonlinear PDE. Previous work has focused on explicit methods. However, pricing discretely observed barrier options requires a very small grid spacing near the barrier, and as a result, the maximum stable timestep for an explicit method is impractically small. A fully implicit method is developed for nonlinear option pricing models, and applied to arithmetic step options, where the option loses a fraction of its value for every day over the barrier.

91G60 Numerical methods (including Monte Carlo methods)
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
91G20 Derivative securities (option pricing, hedging, etc.)
Full Text: DOI
[1] Andersen, L.B.G.; Brotherton-Ratcliffe, R., The equity option volatility smile: an implicit finite difference approach, J. comput. fin., 1, 5-37, (1998)
[2] Avellaneda, M.; Levy, A., A parás, pricing and hedging derivative securities in markets with uncertain volatilities, Appl. math. fin., 2, 73-88, (1995)
[3] Avellaneda, M.; Paras, A., Managing security risk of portfolios of derivative securities: the Lagrangian uncertain volatility model, Appl. math. fin., 3, 21-52, (1996) · Zbl 1097.91514
[4] Ball, C.A.; Roma, A., Stochastic volatility option pricing, J. fin. quant. anal., 29, 589-607, (1994)
[5] Black, F.; Scholes, M., The pricing of options and corporate liabilities, J. Pol. econ., 81, 637-659, (1973) · Zbl 1092.91524
[6] Boyle, P.P.; Vorst, T., Option replication in discrete time with transaction costs, J. fin., 47, 271-293, (1992)
[7] Canina, L.; Figlewski, S., The informational content of implied volatility, Rev. fin. stud., 6, 659-681, (1993)
[8] Chesney, M.; Cornwall, J.; Jeanblanc-Picqué, M.; Kentwell, G.; Yor, M., Parisian pricing, Risk, 10, 77-79, (1997)
[9] Coleman, T.F.; Li, Y.; Verma, A., Reconstructing the unknown local volatility function, J. comput. fin., 2, 3, 77-102, (1999)
[10] Davis, M.H.A.; Panas, V.G.; Zariphopoulou, T., European option pricing with transaction costs, SIAM J. cont. opt., 31, 470-493, (1993) · Zbl 0779.90011
[11] Dumas, B.; Fleming, J.; Whaley, R.E., Implied volatility functions: empirical tests, J. fin., 53, 2059-2106, (1998)
[12] Dupire, B., Pricing with a smile, Risk, 7, 18-20, (1994)
[13] Forsyth, P.A.; Vetzal, K.R.; Zvan, R., A finite element approach to the pricing of discrete lookbacks with stochastic volatility, Appl. math. fin., 6, 87-106, (1999) · Zbl 1009.91030
[14] Heston, S.L., A closed form solution for options with stochastic volatility and applications to bond and currency options, Rev. fin. studies, 6, 327-343, (1993) · Zbl 1384.35131
[15] Hodges, S.D.; Neuberger, A., Optimal replication of contingent claims under transactions costs, Rev. fut. markets, 8, 222-239, (1989)
[16] Hoggard, T.; Whalley, A.E.; Wilmott, P., Hedging option portfolios in the presence of transaction costs, Adv. fut. opt. res., 7, 21-35, (1994)
[17] Hull, J., Options, futures and other derivatives, (1997), Prentice-Hall Englewood Cliffs, NJ · Zbl 1087.91025
[18] Hull, J.; White, A., The pricing of options on assets with stochastic volatilities, J. fin., 42, 281-300, (1987)
[19] Jameson, A., Positive schemes and shock modelling for compressible flows, Internat. J. numer. methods fluids, 20, 743-776, (1995) · Zbl 0837.76055
[20] Johnson, C., Numerical solutions of partial differential equations by the finite element method, (1987), Cambridge University Press
[21] Leland, H.E., Option pricing and replication with transaction costs, J. fin., 40, 1283-1301, (1985)
[22] Linetsky, V., Steps to the barrier, Risk, 11, 62-65, (1998)
[23] Linetsky, V., Step options, Math. fin., 9, 55-96, (1999) · Zbl 1076.91520
[24] Lo, A.W.; Wang, J., Implementing option pricing models when asset returns are predictable, J. fin., 50, 87-127, (1995)
[25] Melino, A.; Turnbull, S.M., Pricing foreign currency options with stochastic volatility, J. econometrics, 45, 239-265, (1990)
[26] Merton, R.C., Theory of rational option pricing, Bell J. econ. man. sci., 4, 141-183, (1973) · Zbl 1257.91043
[27] A. Parás, M. Avellaneda, Dynamic hedging with transaction costs: From lattice models to nonlinear volatility and free boundary problems, Preprint, Courant Institute of Mathematical Sciences, New York, 1995
[28] Rubinstein, M., Implied binomial trees, J. fin., 49, 771-818, (1994)
[29] Stein, E.M.; Stein, J.C., Stock price distributions with stochastic volatility: an analytical approach, Rev. fin. studies, 4, 727-752, (1991) · Zbl 1458.62253
[30] Vetzal, K.R., Stochastic volatility, movements in short term interest rates, and bond option values, J. banking fin., 21, 169-196, (1997)
[31] Vetzal, K.R.; Forsyth, P.A., Discrete Parisian and delayed barrier options: A general numerical approach, Adv. fut. opt. res., 10, 1-15, (1999)
[32] Wiggins, J.B., Option values under stochastic volatility: theory and empirical estimates, J. fin. econ., 19, 351-372, (1987)
[33] Wilmott, P., Derivatives, (1998), Wiley New York
[34] Yor, M.; Chesney, M.; Geman, H.; Jeanblanc-Picqué, M., Some combinations of Asian, Parisian and barrier options, () · Zbl 0911.90036
[35] Zvan, R.; Forsyth, P.A.; Vetzal, K.R., A penalty method for American options with stochastic volatility, J. comput. appl. math., 91, 199-218, (1998) · Zbl 0945.65005
[36] Zvan, R.; Forsyth, P.A.; Vetzal, K.R., Robust numerical methods for PDE models of Asian options, J. comput. fin., 1, 39-78, (1998) · Zbl 0945.65005
[37] R. Zvan, P.A. Forsyth, K.R. Vetzal, A finite volume approach for contingent claims valuation, Working paper, Department of Computer Science, University of Waterloo, http://www.scicom.uwaterloo.ca/ paforsyt/elem.ps, 1999 · Zbl 1004.91032
[38] Zvan, R.; Vetzal, K.R.; Forsyth, P.A., Swing low, swing high, Risk, 11, 71-75, (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.