×

Effective diffusion in a stochastic velocity field. (English) Zbl 0943.82579

Summary: Analytical results are derived for the effective dispersion of a passive scalar in a stochastic velocity field evolving in a fast time scale. These results are favorably compared with direct computer simulation of stochastic differential equations containing multiplicative space-time correlated noise.

MSC:

82C80 Numerical methods of time-dependent statistical mechanics (MSC2010)
76F99 Turbulence
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] G. K. Batchelor, Small-scale variation of convected quantities like temperature in turbulent fluid. 1. General discussion and the case of small conductivity,J. Fluid Mech. 5:113 (1959); G. K. Batchelor, I. D. Howells, and A. A. Townsend, Small-scale variation of convected quantities like temperature in turbulent fluid. 2. The case of large conductivity,J. Fluid Mech. 5:134 (1959). · Zbl 0085.39701 · doi:10.1017/S002211205900009X
[2] P. H. Roberts, Analytical theory of turbulent diffusion,J. Fluid Mech. 11:257 (1961). · Zbl 0099.42102 · doi:10.1017/S0022112061000500
[3] R. H. Kraichnan, Diffusion by a random velocity field,Phys. Fluids 13:22 (1970). · Zbl 0193.27106 · doi:10.1063/1.1692799
[4] R. H. Kraichnan, Small-scale structure of a scalar field converted by turbulence,Phys. Fluids 11:945 (1968). · Zbl 0164.28904 · doi:10.1063/1.1692063
[5] D. W. McLaughlin, G. C. Papanicolau, and O. R. Pironneau, Convection of microstructures and related problems,SIAM J. Appl. Math. 45:780 (1985). · Zbl 0622.76062 · doi:10.1137/0145046
[6] P. G. Saffman, Application of the Wiener-Hermite expansion to the diffusion of a passive scalar in a homogeneous turbulent flow,Phys. Fluids 12:1786 (1969). · Zbl 0263.76047 · doi:10.1063/1.1692743
[7] T. C. Lipscombe, A. L. Frenkel, and D. ter Haar, On the convection of a passive scalar by a turbulent Gaussian velocity field,J. Stat. Phys. 63:305 (1991). · Zbl 0677.76047 · doi:10.1007/BF01026606
[8] L. D. Landau and E. M. Lifshitz,Fluid Mechanics (Pergamon Press, Oxford, 1959).
[9] G. K. Batchelor,The Theory of Homogeneous Turbulence (Cambridge University Press, Cambridge, 1970). · Zbl 0216.52401
[10] E. A. Novikov, Functionals and the random-force method in turbulence theory,Sov. Phys. JETP 20:1290 (1965).
[11] I. T. Drummond, S. Duane, and R. R. Horgan, Scalar diffusion in simulated helical turbulence with molecular diffusivity,J. Fluid Mech. 138:75 (1984). · Zbl 0536.76084 · doi:10.1017/S0022112084000045
[12] K. Binder and D. W. Heermann,Monte Carlo Simulation in Statistical Physics (Springer-Verlag, Berlin, 1988). · Zbl 0687.65004
[13] M. Abramowitz and I. A. Stegun, eds.,Handbook of Mathematical Functions (Dover, New York, 1972). · Zbl 0543.33001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.