×

Asymptotic formulas for generalized elliptic-type integrals. (English) Zbl 0891.33010

In this paper the authors consider a generalized family of elliptic-type integrals in the following form: (*) \(\Lambda^{(\alpha, \beta)}_{(\lambda, \gamma,\mu)} (\rho,\delta;k) = \int^\pi_0 \cos^{2\alpha-1} (\theta/2) \sin^{2\beta-1} (\theta/2) (1-k^2 \cos \theta)^{-\mu -1/2} \cdot [1-\rho \sin^2 (\theta/2)]^{-\lambda} \cdot [1+\delta \cos^2 (\theta/2)]^{- \gamma}d \theta\), \(0\leq k<1\); \(\text{Re} \alpha, \text{Re} \beta>0\); \(\lambda,\mu, \gamma\in\mathbb{C}\); either \(|\rho |\), \(|\delta |<1\) or \(\rho\), (or \(\delta) \in\mathbb{C}\), whenever \(\lambda= -m\) (or \(\gamma= -m)\), \(m\in\mathbb{N}_0\). They first express (*) in terms of the Lauricella’s hypergeometric function of three variables \(F^{(3)}_D\); next, they obtain its asymptotic expansion as \(k^2\to 1\). In particular, \(\Lambda^{(\alpha, \beta)}_{(\lambda, \gamma,\mu)} (\rho,0;k)= \Lambda^{(\alpha, \beta)}_{(\lambda, 0,\mu)} (\rho,\delta;k) =\Lambda^{(\alpha, \beta)}_{\lambda, \mu} (\rho;k)\), which has been studied by H. M. Srivastava and R. N. Siddiqi [Radiat. Phys. Chem. 46, 303-315 (1995)]. By choosing suitable parameters the corresponding asymptotic formulas for other special cases of elliptic-type integrals, such as \(R_\mu (k,\alpha, \gamma)\) [see M. L. Glasser and S. L. Kalla, Rev. Téc. Ing., Univ. Zulia 12, No. 1, 47-50 (1989; Zbl 0681.33002)] and \(\Omega_j(k)\) [see L. F. Epstein and J. H. Hubbell, J. Res. Natl. Bur. Stand., Sect. B 67, 1-17 (1963; Zbl 0114.64002)], are also derived.

MSC:

33E05 Elliptic functions and integrals
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Epstein, L. F.; Hubbel, J. H., Evaluation of a generalized elliptic-type integral, J. Res. N.B.S., 67, 1-17 (1963) · Zbl 0114.06402
[2] Abramowitz, M.; Stegun, I., (Handbook of Mathematical Functions (1972), Dover: Dover New York)
[3] Byrd, P. F.; Friedman, M. D., (Handbook of Elliptic Integrals for Engineers and Scientists (1971), Springer-Verlag: Springer-Verlag Heidelberg)
[4] Evans, J. D.; Hubbell, J. H.; Evans, V. D., Exact series solution to the Epstein-Hubbell generalized elliptic-type integral using complex variable residue theory, Appl. Math. Comp., 53, 173-189 (1993) · Zbl 0767.33015
[5] Kaplan, E. L., Multiple elliptic integrals, J. Math. and Phys., 29, 69-75 (1950) · Zbl 0037.32402
[6] Berger, M. J.; Lamkin, J. C., Sample calculation of gamma ray penetration into shelters, Contribution of sky shine and roof contamination, J. Res. N.B.S., 60, 109-116 (1958)
[7] Hubbell, J. H.; Bach, R. L.; Herbold, R. J., Radiation field from a circular disk source, J. Res. N.B.S., 65, 249-264 (1961)
[8] Kalla, S. L., Results on generalized elliptic-type integrals, (Sendov, Bl., Mathematical Structure Computational Mathematics—Mathematical Modelling (1984), Bulg. Acad. Science), 216-219, Special Vol. · Zbl 0588.33002
[9] Kalla, S. L.; Conde, S.; Hubbell, J. H., Some results on generalized elliptic-type integrals, Appl. Anal., 22, 273-287 (1986) · Zbl 0588.33001
[10] Kalla, S. L.; Al-Saqabi, B., On a generalized elliptic-type integral, Rev. Bra. Fis., 16, 145-156 (1986)
[11] Kalla, S. L.; Al-Saqabi, B., On generalized elliptic-type integral, Rev. Bra. Fis., 18, 135-155 (1988)
[12] Kalla, S. L.; Al-Saqabi, B., Some results for a class of generalized elliptic-type integrals, Results in Maths, 20, 507-516 (1991) · Zbl 0767.33016
[13] Srivastava, H. M.; Siddiqi, R. N., A unified presentation of certain families of elliptic-type integrals related to radiation field problems, Radiat. Phys. Chem., 46, 303-315 (1995)
[14] Srivastava, H. M.; Bromberg, S., Some families of generalized elliptic-type integrals, Mathl. Comput. Modelling, 21, 3, 29-38 (1995) · Zbl 0820.33010
[15] Bromberg, S., Resultados sobre una integral eliptica generalizada, Rev. Tec. Ing. Univ. Zulia, 15, i, 29-35 (1992)
[16] Bushell, P. J., On a generalization of Barton’s integral and related integrals of complete elliptic integrals, (Math. Proc. Camb. Phil. Soc., 101 (1987)), 1-5 · Zbl 0628.33002
[17] Mohamed, M. A.H., Numerical computation of some complete elliptic integrals of the first and second kinds, (M.S. Thesis (1986), Iowa State Univ. of Science and Technology)
[18] Todorov, P. G.; Hubbell, J. H., On the Epstein-Hubbell generalized elliptic-type integral, Appl. Math. Comput., 61, 157-161 (1994) · Zbl 0797.33010
[19] Kalla, S. L.; Leubner, C.; Hubbell, J. H., Further results on generalized elliptic-type integrals, Appl. Anal., 25, 269-274 (1987) · Zbl 0606.33003
[20] Glasser, M. L.; Kalla, S. L., Recursion relations for a class of generalized elliptic-type integrals, Rev. Tec. Ing. Univ. Zulia, 12, 47-50 (1989) · Zbl 0681.33002
[21] Exton, H., Multiple Hypergeometric Functions and Applications (1976), Ellis Horwood Ltd: Ellis Horwood Ltd New York · Zbl 0337.33001
[22] Lebedev, N. N., Special Functions and Their Applications (1965), Prentice Hall · Zbl 0131.07002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.