zbMATH — the first resource for mathematics

An improved one-point integration method for large strain elastoplastic analysis. (English) Zbl 0849.73075
Two proposed earlier stabilization methods are combined with the radial return method used to integrate the constitute law. Plane strain problems are first considered, and the method is then generalized to axisymmetrical situations. The explicit time integration scheme with its critical timestep is also considered. A few examples are presented that show the great time savings that can be obtained with reduced integration without any loss of accuracy, and even with a gain in the solution quality, since the underintegrated elements prove to be ‘flexurally superconvergent’.

74S05 Finite element methods applied to problems in solid mechanics
74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
74C20 Large-strain, rate-dependent theories of plasticity
PDF BibTeX Cite
Full Text: DOI
[1] Flanagan, D. P.; Belytschko, T.: A uniform strain hexadron and quadrilateral with orthogonal hourglass control. Internat. J. Numer. methods engrg. 17, 679-706 (1981) · Zbl 0478.73049
[2] Belytschko, T.; Bindeman, L. P.: Assumed strain stabilization of the 4-node quadrilateral with 1-point quadrature for nonlinear problems. Comput. methods appl. Mech. engrg. 88, 311-340 (1991) · Zbl 0742.73019
[3] Flanagan, D. P.; Belytschko, T.: Correction of article by D.P. Flanagan and T. Belytschko. Internat. J. Numer. methods engrg. 19, 467-468 (1983) · Zbl 0502.73062
[4] Flanagan, D. P.; Belytschko, T.: Eigenvalues and stable timesteps for the uniform strain hexhedron and quadrilateral. J. appl. Mech. 51, 35-40 (1981) · Zbl 0549.73044
[5] Liu, W. K.; Belytschko, T.: Efficient linear and nonlinear heat conduction with a quadrilateral element. J. appl. Mech. 20, 931-948 (1984) · Zbl 0542.65067
[6] Belytschko, T.; Ong, J. S. -J.; Liu, W. K.; Kennedy, J. M.: Hourglass control in linear and nonlinear problems. Comput. methods appl. Mech. engrg. 43, 251-276 (1984) · Zbl 0522.73063
[7] Liu, W. K.; Ong, J. S. -J.; Uras, R. A.: Finite element stabilization matrices-a unification approach. Comput. methods. Appl. mech. Engrg. 53, 13-46 (1985) · Zbl 0553.73065
[8] Liu, W. K.; Belytschko, T.; Ong, J. S. J.; Law, S. E.: Use of stabilization matrices in nonlinear analysis. Engrg. comput. 2, 47-55 (1985)
[9] Belytschko, T.; Bachrach, W. E.: Efficient implementation of quadrilaterals with high coarse-mesh accuracy. Comput. methods appl. Mech. engrg. 54, 279-301 (1986) · Zbl 0579.73075
[10] Koh, B. C.; Kikushi, N.: New improved hourglass control for bilinear and trilinear elements in anisotropic linear elasticity. Comput. methods appl. Mech. engrg. 65, 1-46 (1987) · Zbl 0621.73104
[11] Liu, W. K.; Belytschko, T.; Chen, J. S.: Nonlinear versions of flexurally superconvergent elements. Comput. methods appl. Mech. engrg. 71, 241-258 (1988) · Zbl 0679.73028
[12] Jetteur, Ph.; Cescotto, S.: A mixed finite element for the analysis of large inelastic strains. Internat. J. Numer. methods engrg. 31, 229-239 (1991) · Zbl 0825.73786
[13] Simo, J. C.; Hughes, T. J. R.: On the variational foundations of assumed strain methods. J. appl. Mech. 53, No. 1, 51-54 (1986) · Zbl 0592.73019
[14] Wilkins, M. L.: Calculation of elastic plastic flow. Methods of computational physics 3 (1964) · Zbl 0131.34603
[15] Nagtegaal, J. C.; Veldpaus, F. E.: On the implementation of finite strain plasticity equations in a numerical model. Numerical analysis of forming processes, 351-371 (1984)
[16] Stainier, L.: Calcul optimal des matrices d’éléments finis pur des milieux incompressibles en grandes déformations. U.lg.-F.S.A., travail de fin d’études (1992)
[17] Matejovic, P.; Adamik, V.: A one-point integration quadrilateral with hourglass control in axisymmetric geometry. Comput. methods. Appl. engrg. 70, 301-320 (1988)
[18] Matejovic, P.: Quadrilateral with high coarse-mesh accuracy for solid mechanics in axisymmetric geometry. Comput. methods appl. Mech. engrg. 88, 241-258 (1991) · Zbl 0745.73016
[19] Belytschko, T.: An overview of semidiscretization and time integration procedures. Computational methods for transient analysis, 1-66 (1983)
[20] Ponthot, J. P.: Mode d’emploi pour la version pilote de METAFOR. Report TF-24 (1992)
[21] A., Samtech S.: SAMCEF - manuels de l’utilisateur. (1992)
[22] Hallquist, J. O.: User’s manual for DYNA2D – an explicit two-dimensional hydrodynamic finite element code with interactive rezoning. (1984)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.