×

zbMATH — the first resource for mathematics

An iterative solution strategy for boundary element equations from mixed boundary value problems. (English) Zbl 0849.73078
Summary: An iterative solution strategy is presented for mixed boundary value problems from the direct boundary element method, where both Dirichlet and Neumann constraints are prescribed on the boundary. In the mixed boundary value problem constraints are imposed upon the BEM system of equations \(Hu = Gq\) to form \(Ax = b\). The \(A\) matrix is fully-populated, unsymmetric, and made up of columns from \(H\) and \(G\), corresponding to the Neumann and Dirichlet boundary conditions, respectively. In this work, the coefficient matrix \(A\) is rearranged to place the columns from \(H\) in the left-most columns of \(A\) and the columns from \(G\) in the right-most columns of \(A\). The diagonal submatrix in \(A\) containing terms from \(G\) is then reduced by elimination while the diagonal submatrix containing terms from \(H\) is retained for iteration. Jacobi, Gauss-Seidel and conjugate gradient normal iterative solvers are considered. Convergence of the proposed solution strategy is studied using four, two-dimensional potential and elasticity problems.

MSC:
74S15 Boundary element methods applied to problems in solid mechanics
Software:
EISPACK
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bettess, J. A.: Economical solution technique for boundary integral matrices. Internat. J. Numer. methods engrg. 19, 1073-1077 (1983) · Zbl 0509.73099
[2] Amini, S.: An iterative method for the boundary element solution of the exterior acoustic problem. J. comput. Appl. math. 20, 109-117 (1987) · Zbl 0641.65082
[3] Angell, T. S.; Kleinman, R. E.; Roach, G. F.: Iteration methods for potential problems. Technical report no. 87-4 (1987) · Zbl 0658.35093
[4] Bettess, J. A.: Solution techniques for boundary integral matrices. Numerical methods for transient and coupled problems, 123-146 (1987)
[5] Kleinman, R. E.; Roach, G. F.: Iterative solutions of boundary integral equations in acoustics. Technical report no. 87-2 (1987) · Zbl 0647.65083
[6] Mullen, R. L.; Rencis, J. J.: Iterative methods for solving boundary element equations. Comput. structures 25, 713-723 (1987) · Zbl 0603.73082
[7] Araújo, F. C.; Mansur, W. J.: Iterative solvers for BEM systems of equations. BEM xi (1989)
[8] Kleinman, R. E.: Iterative methods for boundary integral equations. J. comput. Math. 7, 140-150 (1989) · Zbl 0672.65091
[9] Romate, J. E.: On the use of conjugate gradient-type methods. Technical report no. 89-5 (1989)
[10] Ahner, J.; Hsiao, G. C.: Iterative solutions boundary integral equations of the first kind. Technical report no. 90-6 (1990)
[11] Araújo, F. C.; Mansur, W. J.; Malaghini, J. E. B.: Biconjugate gradient acceleration for large BEM systems of equations. BEM xii (1990) · Zbl 0767.73085
[12] Kane, J. H.; Keyes, D. E.; Prasad, K. G.: Iterative solution techniques in boundary element analysis. Internat. J. Numer. methods 31, 1511-1536 (1991) · Zbl 0825.73901
[13] Rjasanow, S.: Effective iterative solution methods for boundary element equations. BEM xiii (1991)
[14] Mansur, W. J.; Araújo, F. C.; Malaghini, J. E. B.: Solution of BEM systems of equations via iterative techniques. Internat. J. Numer. methods 33, 1823-1841 (1992) · Zbl 0767.73085
[15] Migeot, J. -L.: BEM-condition number of systems obtained when solving mixed boundary value potential problems. Comm. appl. Numer. methods 2, 429-435 (1986) · Zbl 0596.65080
[16] Urekew, T. J.; Rencis, J. J.: The importance of diagonal dominance in iterative equation solving for boundary element systems of equations. Betech 92 (1992) · Zbl 0800.73503
[17] Urekew, T. J.; Rencis, J. J.: The importance of diagonal dominance in the iterative solution of equations generated from the boundary element method. Internat. J. Numer. methods 36, 3509-3527 (1993) · Zbl 0800.73503
[18] Rokhlin, V.: Rapid solution of integral equations of classical potential theory. J. comput. Phys. 60, 187-207 (1983) · Zbl 0629.65122
[19] Rokhlin, V.: Rapid solution of integral equations of scattering theory in two dimensions. J. comput. Phys. 86, 414-439 (1990) · Zbl 0686.65079
[20] Canning, F. X.: Sparse approximation for solving integral equations with oscillatory kernels. SIAM J. Sci. stat. Comput. 13, 71-87 (1992) · Zbl 0749.65093
[21] Rencis, J. J.; Mullen, R. L.: Solution of elasticity problems by a self-adaptive mesh refinement technique for boundary element computation. Internat. J. Numer. methods 23, 1509-1527 (1986) · Zbl 0593.73088
[22] Rank, E.: Adaptive h-, p- and hp- versions for boundary integral element methods. Internat. J. Numer. methods 28, 1335-1349 (1989) · Zbl 0705.73260
[23] Rencis, J. J.; Urekew, T. J.; Jong, K. -Y.; Kirk, R.; Federico, P.: A posteriori error estimator for finite element and boundary element methods. Comput. & structures 37, 103-117 (1990) · Zbl 0729.73243
[24] Guiggiani, M.: Error indicators for adaptive mesh refinement in the boundary element methods – a new approach. Internat. J. Numer. methods 29, 1247-1269 (1990) · Zbl 0714.73084
[25] Meric, R. A.: Boundary element method for optimization of distributed parameter systems. Internat. J. Numer. methods 20, 1306-1921 (1984) · Zbl 0552.65053
[26] Chol, J. H.; Kwak, B. M.: Boundary integral equation method for shape optimization of elastic structures. Internat. J. Numer. methods 26, 1579-1595 (1988) · Zbl 0636.73085
[27] Kane, J. H.; Saigal, S.: Design sensitivity analysis of solids using BEM. ASCE J. Engrg. mech. 114, 1703-1723 (1988)
[28] Brebbia, C. A.; Ferrante, A. J.: Computational methods for the solution of engineering problems. (1978) · Zbl 0502.65067
[29] Crotty, J. M.: A block equation solver for large unsymmetric matrices arising in the boundary integral equation method. Internat. J. Numer. methods 18, 997-1017 (1982) · Zbl 0485.73068
[30] Golub, G. H.; Van Loan, C. F.: Matrix computations. 52-81 (1983) · Zbl 0559.65011
[31] Wilkinson, J. H.: The algebraic eigenvalue problem. (1965) · Zbl 0258.65037
[32] Jennings, A.: Iterative methods for linear equations. Matrix computation for engineers and scientists, 182-222 (1977)
[33] Smith, B. T.; Boyle, J. M.; Dongerra, J. J.; Garbow, B. S.; Ikebe, Y.; Klema, V. C.; Moler, C. B.: Matrix eigensystem routines - EISPACK guide. Lecture notes in computer science 6 (1976) · Zbl 0325.65016
[34] Brebbia, C. A.; Telles, J. C. F.; Wrobel, L. C.: Potential problems. Boundary element techniques, 47-109 (1984) · Zbl 0556.73086
[35] Brebbia, C. A.; Dominguez, J.: Two dimensional elastostatic. Boundary elements – an introductory course, 191-250 (1989) · Zbl 0691.73033
[36] Reddy, J. N.: Finite-element analysis of one-dimensional problems. An introduction to the finite element method, 64-192 (1984)
[37] Bathe, K-J.; Wilson, E. L.: Formulation of the finite element method. Numerical methods in finite element analysis, 69-120 (1976)
[38] Melosh, R. J.: Continuum element models. Structural engineering analysis by finite elements, 130-183 (1990) · Zbl 0708.73066
[39] Brocklehurst, E. R.: Survey of benchmarks. National physical laboratory report DITC 192/91 (1991)
[40] Dongarra, J. J.: Performance of various computers using standard linear equations software in a Fortran environment. Argonne national laboratory report MCSD-TM-23 (1988)
[41] Ciarlet, P. G.: An introduction to numerical linear algebra and optimisation. (1989)
[42] Lahey F77L EM/32 FORTRAN Version 5.01, Lahey FORTRAN Language Reference, Lahey Computer Systems, Inc., 865 Tahoe Boulevard, P.O. Box 6091, Incline Village, NV 89450-6091, 1992.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.