zbMATH — the first resource for mathematics

On the optimal exploitation of interacting resources. (English) Zbl 0798.90018
Summary: The paper demonstrates – partly analytically and partly numerically – that traditional results in resource economics obtained from the study of only one resource do not carry over to ecologically interacting resources. As in the traditional approach, we also employ dynamic optimization. The limiting behavior of the trajectories is first studied analytically by letting the discount rate approach infinity. A numerical study is then undertaken by means of a dynamic programming algorithm in order to explore the fate of the resources for various finite discount rates. The relation of our results to results in optimal growth theory is also discussed.

91B76 Environmental economics (natural resource models, harvesting, pollution, etc.)
49L20 Dynamic programming in optimal control and differential games
91B62 Economic growth models
Full Text: DOI
[1] Benhabib, J., and Nishimura, K. (1979): ?The Hopf-Bifurcation and the Existence and Stability of Closed Orbits in Multisector Models of Optimal Growth.?Journal of Economic Theory 21: 412-444. · Zbl 0427.90021 · doi:10.1016/0022-0531(79)90050-4
[2] Boldrin, M., and Montrucchio, L. (1986): ?On the Indeterminacy of Capital Accumulation Paths.?Journal of Economic Theory 40: 26-39. · Zbl 0662.90021 · doi:10.1016/0022-0531(86)90005-0
[3] Brock, W. A., and Scheinkman, J. A. (1976): ?Global Asymptotic Stability of Optimal Control Systems with Applications to the Theory of Economic Growth.?Journal of Economic Theory 12: 164-190. · Zbl 0348.90018 · doi:10.1016/0022-0531(76)90031-4
[4] Carlson, D. A., and Haurie, A. (1987):Infinite Horizon Optimal Control, Theory and Applications. Heidelberg: Springer. (Lecture Notes in Economics and Mathematical Systems, vol. 290.) · Zbl 0649.49001
[5] Cass, D., and Shell, K. (1976): ?The Structure and Stability of Competitive Systems.?Journal of Economic Theory 12: 31-70. · Zbl 0348.90039 · doi:10.1016/0022-0531(76)90027-2
[6] Clark, C. W. (1971): ?Economically Optimal Policies for the Utilization of Biologically Renewable Resources.?Mathematical Bioscience 17: 245-268. · Zbl 0226.92003 · doi:10.1016/0025-5564(71)90020-4
[7] ? (1985):Bioeconomic Modelling and Fishery Management. New York: Wiley Interscience.
[8] ? (1990):Mathematical Bioeconomics: The Optimal Management of Renewable Resources. New York: J. Wiley. (First ed. 1976.) · Zbl 0364.90002
[9] Clark, C. W., and Munro, G. R. (1982): ?The Economics of Fishing and Modern Capital Theory.? InEssays on the Economics of Renewable Resources, edited by L. J. Mirman and D. F. Spalber. Amsterdam: North-Holland. · Zbl 0493.90021
[10] Clark, C. W., Clarke, F. H., and Munro, G. R. (1979): ?The Optimal Exploitation of Renewable Resource Stocks: Problems of Irreversible Investment.?Econometrica 47: 25-47. · Zbl 0396.90026 · doi:10.2307/1912344
[11] Conrad, J. M., and Adu-Asamoah, R. (1986): ?Single and Multispecies Systems: The Case of Tuna in the Eastern Tropical Atlantic.?Journal of Environmental Economics and Management 13: 50-86. · doi:10.1016/0095-0696(86)90016-1
[12] Dasgupta, P., and Heal, G. (1974): ?The Optimal Depletion of Exhaustible Resources.?Review of Economic Studies, Symposium: 3-28. · Zbl 0304.90018
[13] Dechert, W. D., and Nishimura, K. (1983): ?A Complete Characterization of Optimal Growth Path in an Aggregate Model with Non-concave Production Function.?Journal of Economic Theory 31: 332-354. · Zbl 0531.90018 · doi:10.1016/0022-0531(83)90081-9
[14] Dockner, E. J., and Feichtinger, G. (1991): ?On the Optimality of Limit Cycles in Dynamic Economic Systems.?Journal of Economics 53: 31-50. · Zbl 0733.90022
[15] Falcone, M. (1987): ?A Numerical Approach to the Infinite Horizon Problem of Deterministic Control Theory.?Applied Mathematics and Optimization 15: 1-13. · Zbl 0715.49023 · doi:10.1007/BF01442644
[16] Falk, I. (1988): ?A Dynamic Model of Interrelated Renewable Resources.?Resources and Energy 10: 55-77. · doi:10.1016/0165-0572(88)90005-9
[17] Gordon, F. S. (1954): ?The Economic Theory of a Common Property Resource: The Fishery.?Journal of Political Economy 62: 124-138. · doi:10.1086/257497
[18] Hájek, O. (1979): ?Discontinuous Differential Equations I, II.?Journal of Differential Equations 22: 149-185. · Zbl 0403.34013 · doi:10.1016/0022-0396(79)90056-1
[19] Halkin, H. (1974): ?Necessary Conditions for Optimal Control Problems with Infinite Horizon.?Econometrica 42: 267-273. · Zbl 0301.90009 · doi:10.2307/1911976
[20] Hannesson, R. (1983): ?Optimal Harvesting of Ecologically Interrelated Fish Species.?Journal of Environmental Economics and Management 10: 329-345. · doi:10.1016/0095-0696(83)90003-7
[21] Hirsch, M. W., and Smale, S. (1974):Differential Equation, Dynamical Systems and Linear Algebra. New York: Academic Press. · Zbl 0309.34001
[22] Hotelling, H. (1931): ?The Economics of Exhaustible Resources.?Journal of Political Economy 39: 137-175. · JFM 57.1496.07 · doi:10.1086/254195
[23] Koopmans, T. C. (1985): ?The Transition from Exhaustible to Renewable or Inexhaustible Resources.? In T. C. Koopmans,Scientific Papers, vol. 2. Cambridge, MA: MIT Press.
[24] Majumdar, M., and Mitra, T. (1982): ?Intertemporal Allocation with Nonconvex Technology, The Aggregative Framework.?Journal of Economic Theory 27: 101-136. · Zbl 0503.90020 · doi:10.1016/0022-0531(82)90017-5
[25] Montrucchio, L. (1992): ?Dynamical Systems that Solve Continuous Time Concave Optimization Problems: Anything Goes.? InCycles and Chaos in Economic Equilibrium, edited by J. Benhabib. Princeton, NJ: Princeton University Press.
[26] Ragozin, D. L., and Brown, G. (1985): ?Harvest Policies and Nonmarket Valuation in a Predator-Prey System.?Journal of Environmental Economics and Management 12: 155-168. · doi:10.1016/0095-0696(85)90025-7
[27] Reed, W. J. (1984): ?The Effects of the Risk of Fire on the Optimal Rotation of a Forest.?Journal of Environmental Economics and Management 11: 180-190. · Zbl 0535.90028 · doi:10.1016/0095-0696(84)90016-0
[28] Rockafellar, R. T. (1976): ?Saddle Points of Hamiltonian Systems in Convex Lagrange Problems Having a Nonzero Discount Rate.?Journal of Economic Theory 12: 71-113. · Zbl 0333.90007 · doi:10.1016/0022-0531(76)90028-4
[29] Semmler, W., and Sieveking, M. (1992): ?On the Optimal Exploitation of Interacting Resources.? Working Paper (mimeo), New School for Social Research, New York.
[30] Sieveking, M. (1990): ?Stability of Limit Cycles.? Mimeo, Department of Mathematics, University of Frankfurt.
[31] Sieveking, M., and Semmler, W. (1990): ?Optimization Without Planning: Growth and Resource Exploitation with a Discount Rate Tending to Infinity.? Working Paper, New School for Social Research, New York.
[32] Sieveking, M., (1994): ?The Present Value of Resources with Large Discount Rates.?Applied Mathematics and Optimization (forthcoming).
[33] Sorger, G. (1989): ?On the Optimality and Stability of Competitive Paths in Time Continuous Growth Models.?Journal of Economic Theory 48: 526-547. · Zbl 0685.90027 · doi:10.1016/0022-0531(89)90041-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.