zbMATH — the first resource for mathematics

Direct and large-eddy simulations of transition in the compressible boundary layer. (English) Zbl 0825.76370

76F99 Turbulence
76N20 Boundary-layer theory for compressible fluids and gas dynamics
Full Text: DOI
[1] Aupoix, B., and Arnal, D. (1988). CLIC: Calcul de couches limites compressibles. Rapport technique DERAT 23/5005.19, CERT, Toulouse.
[2] Bayliss, A., Parikh, P., Maestrello, L., and Turkel, E. (1985). A fourth-order scheme for the unsteady compressible Navier-Stokes equations. AIAA Paper 85-1694.
[3] Chollet, J.-P., and Lesieur, M. (1981). Parametrization of small scales of three-dimensional isotropic turbulence utilizing spectral closures. J. Atomspheric Sci., Vol. 38, pp. 2747-2757.
[4] Comte, P. (1989). Etude par simulation numérique de la transition à la turbulence en écoulement cisaillé libre. Thèse, Institut National Polytechnique de Grenoble.
[5] Comte, P., and Lesieur, M. (1989). Coherent structures of mixing layers in large-eddy simulation. In Topologocal Fluid Dynamics, H.K. Moffatt, ed. Cambridge University Press, Cambridge, pp. 649-658.
[6] Comte, P., and Lesieur, M. (1990). Large- and small-scale stirring of vorticity and a passive scalar in a 3D temporal mixing layer. Phys. Fluids A, to appear.
[7] Erlebacher, G., and Hussaini, M.Y. (1987). Stability and transition in supersonic boundary layers. AIAA Paper 87-1416.
[8] Erlebacher, G., and Hussaini, M.Y. (1990). Numerical experiments in supersonic boundary-layer stability. Phys. Fluids A, Vol. 2, pp. 94-104.
[9] Gottlieb, D., and Turkel, E. (1976). Dissipative two-four methods for time-dependent problems. Math. Comp., Vol. 30, pp. 703-723. · Zbl 0358.65074
[10] Herbert T. (1988). Secondary instability of boundary layers. Ann. Rev. Fluid Mech., Vol. 20, pp. 487-526.
[11] Klebanoff, P.S., Tidstrom, K.D., and Sargent, L.M. (1962). The three-dimensional nature of boundary-layer instability. J. Fluid Mech., Vol. 12, pp. 1-34. · Zbl 0131.41901
[12] Kleiser, L., and Zang, T.A. (1991). Numerical simulation of transition in wall-bounded shear flows. Ann. Rev. Fluid Mech., Vol. 23, pp. 495-537.
[13] Kline, S.J., Reynolds, W.C., Schraub, F.A., and Runstadler, P.W. (1967). The structure of turbulent boundary layers. J. Fluid Mech., Vol. 30, pp. 741-773.
[14] Kraichnan, R.H. (1976). Eddy viscosity in two and three dimensions. J. Atmospheric Sci., Vol. 33, pp. 1521-1536.
[15] Lesieur, M. (1987). Turbulence in Fluids. Martinus Nijhoff. Revised edition 1990, Kluwer, Dordrecht.
[16] Macaraeg, M.G., Street, C.L., and Hussaini, M.Y. (1988). A spectral collocation solution to the compressible stability eigenvalue problem. NASA Technical Paper 2858.
[17] Mack, L.M. (1969). Boundary-layer stability theory. Report 900-277, Jet Propulsion Laboratory, Pasadena, CA.
[18] Maestrello, L., Bayliss, A., and Krishnan, R. (1989). Numerical study of three-dimensional spatial instability of a supersonic flat plate boundary layer. ICASE Report 89-74.
[19] Masad, J.A., and Nayfeh, A.H. (1990). Subharmonic instability of compressible boundary layers. Phys. Fluids A, Vol. 2, pp. 1380-1392. · Zbl 0709.76116
[20] Métais, O., and Chollet, J.-P. (1989). Turbulence submitted to stable density stratification: large-eddy simulations and statistical theory. Proceedings in Turbulent Shear Flows Vol. 6, Springer-Verlag, New York, pp. 398-415.
[21] Métais, O., and Lesieur, M. (1990). Spectral large-eddy simulation of isotropic and stably-stratified turbulence. Submitted to J. Fluid Mech. · Zbl 0825.76272
[22] Moin, P., Leonard, A., and Kim, J. (1985). Evolution of a curved vortex filament into a vortex ring. Phys. Fluids, Vol. 29, pp. 955-963.
[23] Nayfeh, A.H., and Harper, R. (1989). Subharmonic stability of compressible boundary layers. cnProceedings of the Third IUTAM Symposium on Laminar-Turbulent Transition, Sept. 11-15, Toulouse, D. Arnal and R. Michel, eds. Springer-Verlag, Berlin.
[24] Normand, X., (1989). Numerical simulations of compressible mixing layers. Proceedings of the Instability and Transition Workshop, ICASE/LaRC, June 1989.
[25] Normand, X. (1990). Transition à la turbulence dans les écoulements cisaillés compressibles libres et pariétaux. Thèse, Institut National Polytechnique de Grenoble.
[26] Pierrehumbert, R.T., and Widnall, S.E. (1982) The two- and three-dimensional instabilities of a spatially periodic shear layer. J. Fluid Mech., Vol. 114, pp. 59-82. · Zbl 0479.76056
[27] Sandham, N.D., and Reynolds, W.C. (1990). Three-dimensional simulations of the compressible mixing layer. J. Fluid Mech., to appear. · Zbl 0717.76094
[28] Schlichting, H. (1979). Boundary-Layer Theory, 7th edn. McGraw-Hill, New York. · Zbl 0434.76027
[29] Silveira, A., Grand, D., Métais, O., and Lesieur, M. (1991) Large-eddy simulation of the turbulent flow in the downstream region of a backward-facing step. Phys. Rev. Lett., Vol. 66, pp. 2320-2323.
[30] Smagorinsky, J. (1963). General circulation experiments with the primitive equations: 1. The basic experiment. Monthly Weather Rev., Vol. 91, pp. 99-164.
[31] Spalart, P.R., and Yang, K.-S. (1987). Numerical study of ribbon-induced transition in Blasius flow. J. Fluid Mech., Vol. 178, pp. 345-365.
[32] Strang, G. (1968). On the construction and comparison of difference schemes. SIAM J. Numer. Anal., Vol. 5 (3), pp. 506-517. · Zbl 0184.38503
[33] Thumm, A., Wolz, W., and Fasel, H (1989). Numerical simulation of spatially growing three-dimensional disturbance waves in compressible boundary layers. Proceedings of the Third IUTAM Symposium on Laminar-Turbulent Transition, Sept. 11-15, Toulouse, D. Arnal and R. Michel, eds. Springer-Verlag, Berlin.
[34] Zang, T.A. and Hussaini, M.Y. (1987). Numerical simulation of nonlinear interactions in channel and boundary-layer transition. In Nonlinear Wave Interactions in Fluids, R.W. Miksad T.R. Akylas, and T. Herbert, eds. AMD-87. ASME, New York, pp. 131-145.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.