×

The finite element approximation of variational inequalities related to ergodic control problems. (English) Zbl 0886.65067

The authors consider variational inequalities of the form \(a(u_{\alpha},v-u_{\alpha}) + \alpha\cdot (u_{\alpha},v-u_{\alpha})\geq (f,v-u_{\alpha})\), where \(u_{\alpha} \in H^{1}(\Omega)\), \(u_{\alpha} \leq\psi\); \(v \in H^{1}(\Omega)\), \(v\leq \psi\), \(\Omega\) is a given bounded smooth open set in \(\mathbb{R}^{N}\), \(f\) is a given function in \(L^{\infty}(\Omega)\), \(\psi\) is a positive obstacle of \(W^{2,\infty}(\Omega)\), \(a(u,v)=\int_{\Omega} \text{grad} (u)\cdot \text{grad} (v)dx\). Under suitable assumptions the solution \(u_{\alpha}\) of this inequality converges in the \(L^{\infty}\) norm to \(u_{0}\in H^{1}(\Omega)\), the unique solution of the inequality \((u_{0},v-u_{0})\geq (f,v-u_{0})\), as \(\alpha\) tends to zero, \(\alpha > 0\). Supposing that \(\Omega\) is a polyhedral, a regular quasi-uniform triangulation of \(\Omega\) into \(n-\)simplices of diameter less than \(h\) leads to the discrete variational inequality \(a(u_{\alpha h}v_{h}- u_{\alpha h})+\alpha \cdot (u_{\alpha h}v_{h} - u_{\alpha h}) \geq (fv_{h}-u_{\alpha h})\). Using some results of Ph. Cortey-Dumont [Numer. Math. 47, 45-57 (1985; Zbl 0574.65064)], the authors prove the following error estimates: \(|u_{\alpha}-u_{\alpha h} |_{\infty} \leq C h^{2} |\log h|^{2}\), \(|u_{0} - u_{0h} |_{\infty} \leq Ch^{2} |\log h|^{2}\), where \(C\) is a constant independent of both \(\alpha\) and \(h\).
NB. The paper is carelessly edited and typeset; in particular, the reference to the above mentioned paper of Cortey-Dumont, instead of to the 47th, points to the 5th volume of Numer. Math.
Reviewer: S.Zabek (Lublin)

MSC:

65K10 Numerical optimization and variational techniques
49J40 Variational inequalities
49M15 Newton-type methods

Citations:

Zbl 0574.65064
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Cortey-Dumont, Ph., Sur les inéquations variationnelles à opérateurs non coercifs, \(M^2\) AN, 19, 195-212 (1985)
[2] Bensoussan, A.; Lions, J. L., On the asymptotic behaviour of the solution of variational inequalities, (Theory of Linear Operators (1978), Akademic Verlag: Akademic Verlag Berlin) · Zbl 0341.49026
[3] Boulbrachene, M., Sur quelques questions d’approximations de problèmes à frontières libre, de sous-domaines et d’erreurs d’arrondi, (Thèse de Doctorat de l’université de Franche (1987), Comté Besançon: Comté Besançon France)
[4] Ciarlet, P. G.; Raviart, P. A., Maximum principle and uniform convergence for the finite element method, Comp. Math. in Appl. Mech. and Eng., 2, 1-20 (1973) · Zbl 0251.65069
[5] Cortey-Dumont, Ph., On finite element approximation in the \(L^∞\)-norm of variational inequalities, Num. Math., 5 (1985) · Zbl 0574.65064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.