zbMATH — the first resource for mathematics

A filter-based, mass-conserving lattice Boltzmann method for immiscible multiphase flows. (English) Zbl 1421.76180
Summary: Some issues of He-Chen-Zhang lattice Boltzmann equation (LBE) method (referred as HCZ model) [X. He et al., J. Comput. Phys. 152, No. 2, 642–663 (1999; Zbl 0954.76076)] for immiscible multiphase flows with large density ratio are assessed in this paper. An extended HCZ model with a filter technique and mass correction procedure is proposed based on HCZ’s LBE multiphase model. The original HCZ model is capable of maintaining a thin interface but is prone to generating unphysical oscillations in surface tension and index function at moderate values of density ratio. With a filtering technique, the monotonic variation of the index function across the interface is maintained with larger density ratio. J. Kim’s surface tension formulation for diffuse-interface method [ibid. 204, No. 2, 784–804 (2005; Zbl 1329.76103)] is then used to remove unphysical oscillation in the surface tension. Furthermore, as the density ratio increases, the effect of velocity divergence term neglected in the original HCZ model causes significant unphysical mass sources near the interface. By keeping the velocity divergence term, the unphysical mass sources near the interface can be removed with large density ratio. The long-time accumulation of the modeling and/or numerical errors in the HCZ model also results in the error of mass conservation of each dispersed phase. A mass correction procedure is devised to improve the performance of the method in this regard. For flows over a stationary and a rising bubble, and capillary waves with density ratio up to 100, the present approach yields solutions with interface thickness of about five to six lattices and no long-time diffusion, significantly advancing the performance of the LBE method for multiphase flow simulations.

76M28 Particle methods and lattice-gas methods
76T10 Liquid-gas two-phase flows, bubbly flows
Full Text: DOI
[1] Shyy, Computational Fluid Dynamics with Moving Boundaries (1996)
[2] Shyy, Computational Modeling for Fluid Flow and Interfacial Transport (1994)
[3] Scardovelli, Direct numerical simulation of free-surface and interfacial flow, Annual Review of Fluid Mechanics 31 pp 567– (1991) · doi:10.1146/annurev.fluid.31.1.567
[4] Tryggvason, A front-tracking method for the computations of multiphase flow, Journal of Computational Physics 169 pp 708– (2001) · Zbl 1047.76574 · doi:10.1006/jcph.2001.6726
[5] Osher, Level set methods: an overview and some recent results, Journal of Computational Physics 169 pp 463– (2001) · Zbl 0988.65093 · doi:10.1006/jcph.2000.6636
[6] Shyy, Multiphase computations using sharp and continuous interface techniques for micro-gravity applications, Computes Rendus Mecanique 332 pp 375– (2004) · Zbl 1386.76177 · doi:10.1016/j.crme.2004.02.014
[7] Singh, Three-dimensional adaptive Cartesian grid method with conservative interface restructuring and reconstruction, Journal of Computational Physics 224 pp 150– (2007) · Zbl 1248.76111 · doi:10.1016/j.jcp.2006.12.026
[8] Chen, Lattice Boltzmann method for fluid flows, Annual Review of Fluid Mechanics 30 pp 329– (1998) · Zbl 1398.76180 · doi:10.1146/annurev.fluid.30.1.329
[9] He, A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability, Journal of Computational Physics 152 pp 642– (1999) · Zbl 0954.76076 · doi:10.1006/jcph.1999.6257
[10] Shan, Lattice Boltzmann model of simulating flows with multiple phases and components, Physical Review E 47 pp 1815– (1993) · doi:10.1103/PhysRevE.47.1815
[11] Ye, An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries, Journal of Computational Physics 156 pp 209– (1999) · Zbl 0957.76043 · doi:10.1006/jcph.1999.6356
[12] Ye, A fixed-grid, sharp-interface method for bubble dynamics and phase change, Journal of Computational Physics 174 pp 781– (2001) · Zbl 1157.76382 · doi:10.1006/jcph.2001.6938
[13] Chen, Lattice gas automata for flow through porous media, Physica D 47 pp 72– (1991) · doi:10.1016/0167-2789(91)90281-D
[14] Lee, A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio, Journal of Computational Physics 206 pp 16– (2005) · Zbl 1087.76089 · doi:10.1016/j.jcp.2004.12.001
[15] Filippova, A novel lattice BGK approach for low Mach number combustion, Journal of Computational Physics 158 pp 139– (2000) · Zbl 0963.76072 · doi:10.1006/jcph.1999.6405
[16] Shan, Simulation of non-ideal gases and liquid-gas phase transitions by the lattice Boltzmann equation, Physical Review E 49 pp 2941– (1994) · doi:10.1103/PhysRevE.49.2941
[17] Swift, Lattice Boltzmann simulation of nonideal fluids, Physical Review Letter 75 pp 830– (1995) · doi:10.1103/PhysRevLett.75.830
[18] He, A discrete Boltzmann equation model for non ideal gases, Physical Review E 57 pp R13– (1998) · doi:10.1103/PhysRevE.57.R13
[19] Sankaranarayanan, Analysis of drag and virtual mass forces in bubbly suspensions using an implicit formulation of the lattice Boltzmann method, Journal of Fluid Mechanics 452 pp 61– (2002) · Zbl 1059.76070 · doi:10.1017/S0022112001006619
[20] Holdych, Migration of a van der Waals bubble: lattice Boltzmann formulation, Physics of Fluids 13 pp 817– (2001) · Zbl 1184.76228 · doi:10.1063/1.1352625
[21] Nourgaliev, The lattice Boltzmann method: theoretical interpretation, numerics and implications, International Journal of Multiphase Flow 29 pp 117– (2003) · Zbl 1136.76594 · doi:10.1016/S0301-9322(02)00108-8
[22] Chang, Application of the lattice Boltzmann method to two-phase Rayleigh-Benard convection with a deformable interface, Journal of Computational Physics 212 pp 473– (2006) · Zbl 1084.76061 · doi:10.1016/j.jcp.2005.05.031
[23] Inamuro, A lattice Boltzmann method for incompressible two-phase flows with large density difference, Journal of Computational Physics 198 pp 628– (2004) · Zbl 1116.76415 · doi:10.1016/j.jcp.2004.01.019
[24] Zheng, A lattice Boltzmann model for multiphase flows with large density ratio, Journal of Computational Physics 218 pp 353– (2006) · Zbl 1158.76419 · doi:10.1016/j.jcp.2006.02.015
[25] Shyy, On the suppression of numerical oscillations using a non-linear filter, Journal of Computational Physics 102 pp 49– (1992) · Zbl 0775.76122 · doi:10.1016/S0021-9991(05)80004-X
[26] Kim, A continuous surface tension force formulation for diffuse-interface models, Journal of Computational Physics 204 pp 784– (2005) · Zbl 1329.76103 · doi:10.1016/j.jcp.2004.10.032
[27] Carnahan, Intermolecular repulsions and the equation of state for fluids, AlChE Journal 81 pp 1184– (1972) · doi:10.1002/aic.690180615
[28] Carnahan, Equation of state for non-attracting rigid spheres, Journal of Chemical Physics 51 pp 635– (1969) · doi:10.1063/1.1672048
[29] Yang, An adaptive coupled level-set/volume-of-fluid interface capturing method for unstructured triangular grids, Journal of Computational Physics 217 pp 364– (2006) · Zbl 1160.76377 · doi:10.1016/j.jcp.2006.01.007
[30] Zhang, Interface and surface tension in incompressible lattice Boltzmann multiphase model, Computer Physics Communications 129 pp 121– (2000) · Zbl 0990.76073 · doi:10.1016/S0010-4655(00)00099-0
[31] Singh R Three-dimensional marker-based multiphase flow computation using adaptive Cartesian grid techniques 2006
[32] Anderson, Diffuse-interface methods in fluid mechanics, Annual Review of Fluid Mechanics 30 pp 139– (1998) · Zbl 1398.76051 · doi:10.1146/annurev.fluid.30.1.139
[33] Son, A numerical method for bubble motion with phase change, Numerical Heat Transfer, Part B 39 pp 509– (2001) · doi:10.1080/104077901750188868
[34] Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (1981)
[35] Singh, Multiphase/multi-domain computations using continuum and lattice Boltzmann methods, Journal of Aerospace Engineering 19 pp 288– (2006) · doi:10.1061/(ASCE)0893-1321(2006)19:4(288)
[36] Chao J Multiscale computational fluid dynamics and heat transfer with interface 2006
[37] Brackbill, A continuum method for modeling surface tension, Journal of Computational Physics 100 pp 335– (1992) · Zbl 0775.76110 · doi:10.1016/0021-9991(92)90240-Y
[38] Prosperetti, Motion of two superposed viscous fluids, Physics of Fluids 24 pp 1217– (1981) · Zbl 0469.76035 · doi:10.1063/1.863522
[39] Clift, Bubbles Drops and Particles (1978)
[40] Dellar, Incompressible limits of lattice Boltzmann equations using multiple relaxation times, Journal of Computational Physics 190 pp 351– (2003) · Zbl 1076.76063 · doi:10.1016/S0021-9991(03)00279-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.