zbMATH — the first resource for mathematics

Computational cardiology: a modified Hill model to describe the electro-visco-elasticity of the myocardium. (English) Zbl 1439.74193
Summary: This contribution presents a novel three-dimensional constitutive model which describes the orthotropic electro-visco-elastic response of the myocardium. The model can be regarded as the viscoelastic extension of the recently proposed generalized Hill model for orthotropic active muscle cells. The formulation extends the recent contributions of the authors [“An orthotropic viscoelastic material model for passive myocardium: theory and algorithmic treatment”, Comput. Methods Biomech. Biomed. Eng. 18, No. 11, 1160–1172 (2015; doi:10.1080/10255842.2014.881475)] and S. Göktepe et al. [J. Mech. Phys. Solids 72, 20–39 (2014; Zbl 1328.74063)] in a novel rheological description which incorporates the active (electrical) and mechanical (viscous and elastic) deformations in a multiplicative format. To this end, the stress response is additively decomposed into passive (purely mechanical) and visco-active (electro-visco-elastic) contributions in line with a rheological model in which the passive part is connected parallel to a branch that consists of an elastic spring, a dashpot and a contractile element in serial. The former branch is assumed to be a function of the total deformation gradient while the formulation of the latter one is based on a multiplicative decomposition of the total deformation gradient into a mechanical and an active part. The active deformation gradient is devised by means of the prescribed active stretch which arises from the electrical excitation of the myocardial tissue and is governed by the intracellular calcium concentration. Thanks to the proposed rheology, marked differences are observed in isometric and isotonic tests between viscoelastic and elastic cases that are performed on material level. Moreover, novel evolution equations for the description of active stretch and intracellular calcium concentration having superiorities over the existing approaches have been proposed. On the numerical side, a fully implicit finite element formulation along with surface elements accounting for blood pressure evolution in the ventricles during successive phases of the cardiac cycle is presented. The argument of the constitutive equation describing the ventricular blood pressure is specified as the associated ventricular cavity volume which leads to the mutual interaction of the non-adjacent surface elements. The performance of the theory and algorithms are demonstrated by means of representative multi-field initial-boundary value problems. The results indicate that viscous effects significantly alter the electromechanical response of the cardiac tissue and is thought to be crucial in the virtual assessment of the cardiac function.

74L15 Biomechanical solid mechanics
92C30 Physiology (general)
74S99 Numerical and other methods in solid mechanics
Full Text: DOI
[1] Mozaffarian, D.; Benjamin, E. J.; Go, A. S.; Arnett, D. K.; Blaha, M. J.; Cushman, M.; de Ferranti, S.; Després, J.; Fullerton, H. J.; Howard, V. J.; Huffman, M. D.; Judd, S. E.; Kissela, B. M.; Lackland, D. T.; Lichtman, J. H.; Lisabeth, L. D.; Liu, S.; Mackey, R. H.; Matchar, D. B.; McGuire, D. K.; Mohler, E. R.; Moy, C. S.; Muntner, P.; Mussolino, M. E.; Nasir, K.; Neumar, R. W.; Nichol, G.; Palaniappan, L.; Pandey, D. K.; Reeves, M. J.; Rodriguez, C. J.; Sorlie, P. D.; Stein, J.; Towfighi, A.; Turan, T. N.; Virani, S. S.; Willey, J. Z.; Woo, D.; Yeh, R. W.; Turner, M. B., Heart disease and stroke statistics-2015 update: A report from the american heart association, Circulation, 131, e29-e322 (2015)
[2] Fitzhugh, R., Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1, 445-466 (1961)
[3] Aliev, R. R.; Panfilov, A. V., A simple two-variable model of cardiac excitation, Chaos Solirons Fractals, 7, 293-301 (1996)
[4] Luo, C. H.; Rudy, Y., A dynamic model of the cardiac ventricular action potential. i. simulations of ionic currents and concentration changes, Circ. Res., 74, 1071-1096 (1994)
[5] ten Tusscher, K. H.W.; Noble, D.; Noble, P. J.; Panfilov, A. V., A model for human ventricular tissue, Amer. J. Physiol.-Heart Circ. Physiol., 286, 1573-1589 (2004)
[6] Wong, J.; Göktepe, S.; Kuhl, E., Computational modeling of electrochemical coupling: A novel finite element approach towards ionic models for cardiac electrophysiology, Comput. Methods Appl. Mech. Engrg., 200, 3139-3158 (2011) · Zbl 1230.92013
[7] Lab, M. J., Contraction-excitation feedback in myocardium. physiological basis and clinical relevance, Circ. Res., 50, 757-766 (1982)
[8] Nash, M.; Hunter, P., Computational mechanics of the heart, J. Elasticity, 61, 113-141 (2000) · Zbl 1071.74659
[9] Nash, M. P.; Panfilov, A. V., Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias, Prog. Biophys. Mol. Biol., 85, 501-522 (2004)
[10] Niederer, S. A.; Smith, N. P., An improved numerical method for strong coupling of excitation and contraction models in the heart, Prog. Biophys. Mol. Biol., 96, 90-111 (2008)
[11] Nardinocchi, P.; Teresi, L., On the active response of soft living tissues, J. Elasticity, 88, 27-39 (2007) · Zbl 1115.74349
[12] Cherubini, C.; Filippi, S.; Nardinocchi, P.; Teresi, L., An electromechanical model of cardiac tissue: Constitutive issues and electrophysiological effects, Prog. Biophys. Mol. Biol., 97, 562-573 (2008)
[13] Ambrosi, D.; Arioli, G.; Nobile, F.; Quarteroni, A., Electromechanical coupling in cardiac dynamics: The active strain approach, Soc. Ind. Appl. Math. J. Appl. Math., 71, 605-621 (2011) · Zbl 1419.74174
[14] Göktepe, S.; Menzel, A.; Kuhl, E., The generalized hill model: A kinematic approach towards active muscle contraction, J. Mech. Phys. Solids, 72, 20-39 (2014) · Zbl 1328.74063
[15] Kohl, P.; Hunter, P.; Noble, D., Stretch-induced changes in heart rate and rhythm: clinical observations, experiments and mathematical models, Prog. Biophys. Mol. Biol., 71, 91-138 (1999)
[16] Demer, L.; Yin, F. C.P., Passive biaxial mechanical properties of isolated canine myocardium, J. Physiol., 339, 615-630 (1983)
[17] Brady, A. J., Mechanical properties of isolated cardiac myocytes, Physiol. Rev., 71, 413-428 (1991)
[18] Dokos, S.; Smaill, B. S.; Young, A. A.; LeGrice, I. J., Shear properties of passive ventricular myocardium, Amer. J. Physiol. - Heart Circ. Physiol., 283, H2650-H2659 (2002)
[19] Sommer, G.; Schriefl, A. J.; Andrä, M.; Sacherer, M.; Viertler, C.; Wolinski, H.; Holzapfel, G. A., Biomechanical properties and microstructure of human ventricular myocardium, Acta Biomater., 24, 172-192 (2015)
[20] Lecarpentier, Y.; Martin, J. L.; Claes, V.; Chambaret, J. P.; Migus, A.; Antonetti, A.; Hatt, P. Y., Real-time kinetics of sarcomere relaxation by laser diffraction, Circ. Res., 56, 331-339 (1985)
[21] Lecarpentier, Y.; Chemla, D., Mehcanical analysis of sarcomere by laser diffraction: Energy excahnge and cardiac insuffiency, (Swynghedauw, B., Research in Cardiac Hypertrophy and Failure (1990), INSERM/John Linney Eurotext), 137-160
[22] Noble, M. I. M.; Milne, E. N. C.; Goerke, R. J.; Carlsson, E.; Domenech, R. J.; Saunders, K. B.; Hoffman, J. I. E., Left ventricular filling and diastolic pressure-volume relations in the conscious dog, Circ. Res., 24, 269-283 (1969)
[23] Gaasch, W. H.; Cole, J. S.; Quinones, M. A.; Alexander, J. K., Dynamic determinants of letf ventricular diastolic pressure-volume relations in man, Circulation, 51, 317-323 (1975)
[24] Rankin, J. S.; Arentzen, C. E.; McHale, P. A.; Ling, D.; Anderson, R. W., Viscoelastic properties of the diastolic left ventricle in the conscious dog, Circ. Res., 41, 37-45 (1977)
[25] Fraites, T. J.; Saeki, A.; Kass, D. A., Effect of altering filling pattern on diastolic pressure-volume curve, Circulation, 96, 4408-4414 (1997)
[26] Nonogi, H.; Hess, O. M.; Bortone, A. s.; Ritter, M.; Carroll, J. D.; Krayenbuehl, H. P., Left ventricular pressure-length relation during exercise-induced ischemia, J. Am. Coll. Cardiol., 13, 1062-1070 (1989)
[27] Pouleur, H.; Karliner, J. S.; LeWinter, M.; Covell, J. W., Diastolic viscous properties of the intact canine left ventricle, Circ. Res., 45, 410-419 (1979)
[28] Hess, O. M.; Grimm, J.; Krayenbuehl, H. P., Diastolic simple elastic and viscoelastic properties of the left ventricle in man, Circulation, 59, 1178-1187 (1979)
[29] Chiu, Y.; Ballou, E.; Ford, L., Internal viscoelastic loading in cat papillary muscle, Biophys. J., 40, 109-120 (1982)
[30] Starc, V.; Yellin, E. L.; Nikolic, S. D., Viscoelastic behavior of the isolated guinea pig left ventricle in diastole, Amer. J. Physiol. - Heart Circ. Physiol., 271, 4, H1314-H1324 (1996)
[31] Denslow, S., Constraints on cardiac hypertrophy imposed by myocardial viscosity, J. Appl. Physiol., 89, 1022-1032 (2000)
[32] Loeffler, L.; Sagawa, K., A one-dimensional viscoelastic model of cat heart muscle studied by small length perturbations during isometric contraction, Circ. Res., 36, 498-512 (1975)
[33] Yang, M.; Taber, L. A., The possible role of poroelasticity in the apparent viscoelastic behaviour of passive cardiac muscle, J. Biomech., 27, 587-597 (1991)
[34] Huyghe, J. M.; Arts, T.; van Campen, D. H.; Reneman, R. S., Porous medium finite element of beating left ventricle, Amer. J. Physiol. - Heart Circ. Physiol., 262, H1256-H1267 (1992)
[35] Nedjar, B., An anisotropic viscoelastic fibre-matrix model at finite strains: Continuum formulation and computational aspects, Comput. Methods Appl. Mech. Engrg., 196, 1745-1756 (2007) · Zbl 1173.74322
[36] Cansız, F. B.C.; Dal, H.; Kaliske, M., An orthotropic viscoelastic material model for passive myocardium: Theory and algorithmic treatment, Comput. Methods Biomech. Biomed. Eng., 18, 1160-1172 (2015)
[37] Gültekin, O.; Sommer, G.; Holzapfel, G. A., An orthotropic viscoelastic model for the passive myocardium: Continuum basis and numerical treatment, Comput. Methods Biomech. Biomed. Eng., 1-18 (2016)
[38] Katsnelson, L.; Nikitina, L. V.; Chemla, D.; Solovyova, O.; Coirault, C.; Lecarpentier, Y.; Markhasin, V. S., Influence of viscosity on myocardium mechanical activity: a mathematical model, J. Theoret. Biol., 230, 385-405 (2004)
[39] Glantz, S. A., A three-element description for muscle with viscoelastic passive elements, J. Biomech., 10, 5-20 (1977)
[40] Sainte-Marie, J.; Chapelle, D.; Cimrman, R.; Sorine, M., Modeling and estimation of the cardiac electromechanical activity, Comput. Struct., 84, 1743-1759 (2006)
[41] Keldermann, R.; Nash, M.; Panfilov, A., Pacemakers in a reaction-diffusion mechanics system, J. Stat. Phys., 128, 375-392 (2007)
[42] Rossi, S.; Lassila, T.; Ruiz-Baier, R.; Sequeira, A.; Quarteroni, A., Thermodynamically consistent orthotropic activation model capturing ventricular systolic wall thickening in cardiac electromechanics, Eur. J. Mech. A Solids, 48, 129-142 (2014)
[43] Berberoğlu, E.; Solmaz, H. O.; Göktepe, S., Computational modeling of coupled cardiac electromechanics incorporating cardiac dysfunctions, Eur. J. Mech. A Solids, 1-14 (2014)
[44] Hill, A. V., The heat of shortening and the dynamic constants of muscle, Proc. R. Soc. B: Biol. Sci., 126, 136-195 (1938)
[45] Holzapfel, G. A.; Ogden, R. W., Constitutive modelling of passive myocardium: A structurally based framework for material characterization, Phil. Trans. R. Soc. A, 367, 3445-3475 (2009)
[46] Göktepe, S.; Kuhl, E., Electromechanics of the heart: a unified approach to the strongly coupled excitation-contraction problem, Comput. Mech., 45, 227-243 (2010)
[47] Dal, H.; Göktepe, S.; Kuhl, E.; Kaliske, M., A fully implicit finite element method for bidomain models of cardiac electrophysiology, Comput. Methods Biomech. Biomed. Eng., 15, 645-656 (2012)
[48] Dal, H.; Göktepe, S.; Kuhl, E.; Kaliske, M., A fully implicit finite element method for bidomain models of cardiac electromechanics, Comput. Methods Appl. Mech. Engrg., 253, 323-336 (2013)
[49] Mullins, P. D.; Bondarenko, V. E., A mathematical model of the mouse ventricular myocyte contraction, PLoS One, 8, 1-15 (2013)
[50] Zienkiewicz, O. C.; Taylor, R. L., (The Finite Element Method. The Finite Element Method, The Basis. Referex Engineering, vol. 1 (2000), Butterworth-Heinemann: Butterworth-Heinemann Oxford)
[51] Biot, M. A., Mechanics of Incremental Deformations (1965), Wiley: Wiley New York
[52] Ashikaga, H.; Coppola, B. A.; Hopenfeld, B.; Leifer, E. S.; McVeigh, E. R.; Omens, J. H., Transmural dispersion of myofiber mechanics: Implications for electrical heterogeneity in vivo, J. Am. Coll. Cardiol., 49, 909-916 (2007)
[53] Ashikaga, H.; van der Spoel, T. I.; Coppola, B. A.; Omens, J. H., Transmural myocardial mechanics during isovolumic contraction, JACC: Cardiovasc. Imaging, 2, 202-211 (2009)
[54] Gurev, V.; Constantino, J.; Rice, J.; Trayanova, N., Distribution of electromechanical delay in the heart: Insights from a three-dimensional electromechanical model, Biophys. J., 99, 745-754 (2010)
[55] Pelce, P.; Sun, J., A simple model for excitation-contraction coupling in the heart, Chaos Solirons Fractals, 5, 383-391 (1995)
[56] Nobile, F.; Quarteroni, A.; Ruiz-Baier, R., An active strain electromechanical model for cardiac tissue, Int. J. Numer. Methods Biomed. Eng., 28, 52-71 (2012)
[57] Cansız, B.; Dal, H.; Kaliske, M., Fully coupled cardiac electromechanics with orthotropic viscoelastic effects, Procedia IUTAM, 12, 124-133 (2015)
[58] Panfilov, A. V.; Keldermann, R. H.; Nash, M. P., Self-organized pacemakers in a coupled reaction-diffusion-mechanics system, Phys. Rev. Lett., 95 (2005), 258104-1-258104-4
[59] Zeidan, Z.; Erbel, R.; Barkhausen, J.; Hunold, P.; Bartel, T.; Buck, T., Analysis of global systolic and diastolic left ventricular performance using volume-time curves by real-time three-dimensional echocardiography, J. Amer. Soc. Echocardiogr., 16, 29-37 (2003)
[60] Poliner, L. R.; Dehmer, G. J.; Lewis, S. E.; Parkey, R. W.; Blomqvist, C. G.; Willerson, J. T., Left ventricular performance in normal subjects: a comparison of the responses to exercise in the upright and supine positions, Circulation, 62, 528-534 (1980)
[61] Sundstedt, M.; Hedberg, P.; Jonason, T.; Ringqvist, I.; Brodin, L.-Å.; Henriksen, E., Left ventricular volumes during exercise in endurance athletes assessed by contrast echocardiography, Acta Physiol. Scand., 182, 45-51 (2004)
[62] Kotikanyadanam, M.; Göktepe, S.; Kuhl, E., Computational modeling of electrocardiograms: A finite element approach toward cardiac excitation, Int. J. Numer. Methods Biomed. Eng., 26, 524-533 (2010)
[63] Kohl, P.; Nesbitt, A. D.; Cooper, P. J.; Lei, M., Sudden cardiac death by commotio cordis: role of mechano—electric feedback, Cardiovasc. Res., 50, 280-289 (2001)
[64] Madias, C.; Maron, B. J.; Weinstock, J.; Estes, N. A. M.; Link, M. S., Commotio cordis sudden cardiac death with chest wall impact, J. Cardiovasc. Electrophysiol., 18, 115-122 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.