zbMATH — the first resource for mathematics

Visibility in the vacant set of the Brownian interlacements and the Brownian excursion process. (English) Zbl 07116306
Summary: We consider the Brownian interlacements model in Euclidean space, introduced by A.-S. Sznitman [Bull. Braz. Math. Soc. (N.S.) 44, No. 4, 555–592 (2013; Zbl 1303.60022)]. We give estimates for the asymptotics of the visibility in the vacant set. We also consider visibility inside the vacant set of the Brownian excursion process in the unit disc and show that it undergoes a phase transition regarding visibility to infinity as in [I. Benjamini et al., ALEA, Lat. Am. J. Probab. Math. Stat. 6, 323–342 (2009; Zbl 1276.82012)]. Additionally, we determine the critical value and that there is no visibility to infinity at the critical intensity.

60K35 Interacting random processes; statistical mechanics type models; percolation theory
82B43 Percolation
Full Text: Link arXiv
[1] I. Benjamini, J. Jonasson, O. Schramm and J. Tykesson. Visibility to infinity in the hyperbolic plane, despite obstacles. ALEA Lat. Am. J. Probab. Math. Stat. 6, 323-342 (2009) · Zbl 1276.82012
[2] M. Brelot. Lectures on potential theory. Notes by K. N. Gowrisankaran and M. K. Venkatesha Murthy. Second edition, revised and enlarged with the help of S. Ramaswamy. Tata Institute of Fundamental Research Lectures on Mathematics, No. 19. Tata Institute of Fundamental Research, Bombay (1967)
[3] K. Burdzy. Multidimensional Brownian excursions and potential theory, volume 164 of Pitman Research Notes in Mathematics Series. Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York (1987). ISBN 0-58200573-6 · Zbl 0691.60066
[4] P. Calka, J. Michel and S. Porret-Blanc. Visibilit´e dans le mod‘ele bool´een. C. R. Math. Acad. Sci. Paris 347 (11-12), 659-662 (2009)
[5] W. Feller. The asymptotic distribution of the range of sums of independent random variables. Ann. Math. Statistics 22, 427-432 (1951) · Zbl 0043.34201
[6] A. Grigor’yan. Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Amer. Math. Soc. (N.S.) 36 (2), 135-249 (1999)
[7] E. P. Hsu. Stochastic analysis on manifolds, volume 38 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2002). ISBN 0-8218-0802-8 · Zbl 0994.58019
[8] J.-P. Kahane. Recouvrements al´eatoires et th´eorie du potentiel. Colloq. Math. 60/61 (2), 387-411 (1990)
[9] J.-P. Kahane. Produits de poids al´eatoires ind´ependants et applications. In Fractal geometry and analysis (Montreal, PQ, 1989), volume 346 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pages 277-324. Kluwer Acad. Publ., Dordrecht (1991)
[10] H. Lacoin and J. Tykesson. On the easiest way to connect k points in the random interlacements process. ALEA Lat. Am. J. Probab. Math. Stat. 10 (1), 505-524 (2013) · Zbl 1277.60177
[11] G. F. Lawler. Conformally invariant processes in the plane, volume 114 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2005). ISBN 0-8218-3677-3
[12] G. F. Lawler and W. Werner. Universality for conformally invariant intersection exponents. J. Eur. Math. Soc. (JEMS) 2 (4), 291-328 (2000) · Zbl 1098.60081
[13] G. F. Lawler and W. Werner. The Brownian loop soup. Probab. Theory Related Fields 128 (4), 565-588 (2004) · Zbl 1049.60072
[14] X. Li. Percolative properties of brownian interlacements and its vacant set. ArXiv Mathematics e-prints (2016)
[15] R. Lyons. Diffusions and random shadows in negatively curved manifolds. J. Funct. Anal. 138 (2), 426-448 (1996) · Zbl 0877.58058
[16] G. Matheron. Random sets and integral geometry. John Wiley & Sons, New YorkLondon-Sydney (1975) · Zbl 0321.60009
[17] P. M¨orters and Y. Peres. Brownian motion, volume 30 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (2010). ISBN 978-0-521-76018-8
[18] G. P´olya.Zahlentheoretisches und wahrscheinlichkeitstheoretisches ¨uber die sichtweite im walde. Arch. Math. Phys 27, 135-142 (1918) · JFM 46.0284.01
[19] S. C. Port and C. J. Stone. Brownian motion and classical potential theory. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London (1978). ISBN 0-12-561850-6 · Zbl 0413.60067
[20] E. B. Procaccia and J. Tykesson. Geometry of the random interlacement. Electron. Commun. Probab. 16, 528-544 (2011) · Zbl 1254.60018
[21] B. R´ath and A. Sapozhnikov. Connectivity properties of random interlacement and intersection of random walks. ALEA Lat. Am. J. Probab. Math. Stat. 9, 67-83 (2012) · Zbl 1277.60182
[22] L. A. Shepp. Covering the circle with random arcs. Israel J. Math. 11, 328-345 (1972) · Zbl 0241.60008
[23] V. Sidoravicius and A.-S. Sznitman.Percolation for the vacant set of random interlacements. Comm. Pure Appl. Math. 62 (6), 831-858 (2009) · Zbl 1168.60036
[24] A. F. Siegel and L. Holst. Covering the circle with random arcs of random sizes. J. Appl. Probab. 19 (2), 373-381 (1982) · Zbl 0489.60017
[25] A.-S. Sznitman. Vacant set of random interlacements and percolation. Ann. of Math. (2) 171 (3), 2039-2087 (2010) · Zbl 1202.60160
[26] A.-S. Sznitman. On scaling limits and Brownian interlacements. Bull. Braz. Math. Soc. (N.S.) 44 (4), 555-592 (2013) · Zbl 1303.60022
[27] C. Th¨ale.Hausdorff dimension of visible sets for well-behaved continuum percolation in the hyperbolic plane. Braz. J. Probab. Stat. 28 (1), 73-82 (2014)
[28] J. Tykesson.Continuum percolation in non-Euclidean spaces.Ph.D. thesis, Chalmers University of Technology (2008)
[29] J. Tykesson and D. Windisch. Percolation in the vacant set of Poisson cylinders. Probab. Theory Related Fields 154 (1-2), 165-191 (2012) · Zbl 1263.82027
[30] J. ˇCern´y and S. Popov. On the internal distance in the interlacement set. Electron. J. Probab. 17, no. 29, 25 (2012)
[31] B. Vir´ag. Brownian beads. Probab. Theory Related Fields 127 (3), 367-387 (2003) · Zbl 1035.60085
[32] H. Wu. On the occupation
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.