×

zbMATH — the first resource for mathematics

\(\Gamma\)-convergence for high order phase field fracture: continuum and isogeometric formulations. (English) Zbl 1439.74027
Summary: We consider high order phase field functionals introduced in [M. J. Borden et al., Comput. Methods Appl. Mech. Eng. 273, 100–118 (2014; Zbl 1296.74098)] and provide a rigorous proof that these functionals converge to a sharp crack brittle fracture energy. We take into account three dimensional problems in linear elastic fracture mechanics and functionals defined both in Sobolev spaces and in spaces of tensor product \(B\)-splines. In the latter convergence holds when the mesh size vanishes faster than the internal length of the phase-field model. On the theoretical level, this condition is natural since the size of the phase field layer, around the crack, itself scales like the internal length; on the numerical level, it should be satisfied by local \(h\)-refinement.
Technically, convergence holds in the sense of \(\Gamma\)-convergence, with respect to the strong topology of \(L^1\), while the sharp crack energy is defined in \(GSBD^2\). The constraint on the phase field to take values in \([0,1]\) is taken into account both in the Sobolev setting and in the iso-geometric setting; in the latter, it requires a special treatment since the projection operator on the space of tensor product \(B\)-splines is not Lagrangian (i.e., interpolatory).
MSC:
74A45 Theories of fracture and damage
74R10 Brittle fracture
74S22 Isogeometric methods applied to problems in solid mechanics
49J45 Methods involving semicontinuity and convergence; relaxation
PDF BibTeX Cite
Full Text: DOI
References:
[1] Bourdin, B.; Francfort, G. A.; Marigo, J.-J., Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48, 4, 797-826 (2000) · Zbl 0995.74057
[2] Ambrosio, L.; Tortorelli, V. M., Approximation of functionals depending on jumps by elliptic functionals via \(\Gamma \)-convergence, Comm. Pure Appl. Math., 43, 8, 999-1036 (1990) · Zbl 0722.49020
[3] March, R., Visual reconstruction with discontinuities using variational methods, Vis. Comput., 10, 30-38 (1992)
[4] Mumford, D.; Shah, J., Optimal approximations by piecewise smooth functions and associated variational problems, Commun. Pure Appl. Math., 42, 5, 577-685 (1989) · Zbl 0691.49036
[5] Miehe, C.; Welschinger, F.; Hofacker, M., Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations, Internat. J. Numer. Methods Engrg., 83, 10, 1273-1311 (2010) · Zbl 1202.74014
[6] Kuhn, C.; Müller, R., A continuum phase field model for fracture, Eng. Fract. Mech., 77, 18, 3625-3634 (2010)
[7] Borden, M. J.; Hughes, T. J.R.; Landis, C. M.; Verhoosel, C. V., A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework, Comput. Methods Appl. Mech. Engrg., 273, 100-118 (2014) · Zbl 1296.74098
[8] Sicsic, P.; Marigo, J.-J.; Maurini, C., Initiation of a periodic array of cracks in the thermal shock problem: A gradient damage modeling, J. Mech. Phys. Solids, 63, 256-284 (2014) · Zbl 1303.74008
[9] Li, B.; Peco, C.; Millán, D.; Arias, I.; Arroyo, M., Phase-field modeling and simulation of fracture in brittle materials with strongly anisotropic surface energy, Internat. J. Numer. Methods Engrg., 102, 3-4, 711-727 (2015) · Zbl 1352.74290
[10] Mikelić, A.; Wheeler, M. F.; Wick, T., A quasi-static phase-field approach to pressurized fractures, Nonlinearity, 28, 5, 1371-1399 (2015) · Zbl 1316.35287
[11] Kiendl, J.; Ambati, M.; De Lorenzis, L.; Gomez, H.; Reali, A., Phase-field description of brittle fracture in plates and shells, Comput. Methods Appl. Mech. Engrg., 312, 374-394 (2016)
[12] Bourdin, B.; Francfort, G. A.; Marigo, J.-J., The variational approach to fracture, J. Elasticity, 91, 5-148 (2008) · Zbl 1176.74018
[13] Ambati, M.; Gerasimov, T.; De Lorenzis, L., A review on phase-field models of brittle fracture and a new fast hybrid formulation, Comput. Mech., 55, 2, 383-405 (2015) · Zbl 1398.74270
[14] Burger, M.; Esposito, T.; Zeppieri, C. I., Second-order edge-penalization in the Ambrosio-Tortorelli functional, Multiscale Model. Simul., 13, 4, 1354-1389 (2015) · Zbl 1332.49016
[15] Larsen, C. J.; Ortner, C.; Süli, E., Existence of solutions to a regularized model of dynamic fracture, Math. Models Methods Appl. Sci., 20, 7, 1021-1048 (2010) · Zbl 1425.74418
[16] Negri, M., Quasi-static evolutions in brittle fracture generated by gradient flows: sharp crack and phase-field approaches, (Innovative Numerical Approaches for Multi-Physics and Multi-Scale Problems. Innovative Numerical Approaches for Multi-Physics and Multi-Scale Problems, Lecture Notes in Applied and Computational Mechanics, vol. 81 (2016), Springer), 197-216
[17] Knees, D.; Negri, M., Convergence of alternate minimization schemes for phase field fracture and damage, Math. Models Methods Appl. Sci., 27, 9, 1743-1794 (2017) · Zbl 1376.49038
[18] Almi, S.; Negri, M., Analysis of staggered evolutions for nonlinear energies in phase field fracture, Arch. Ration. Mech. Anal. (2019)
[19] Dal Maso, G., Generalised functions of bounded deformation, J. Eur. Math. Soc., 15, 5, 1943-1997 (2013) · Zbl 1271.49029
[20] Dal Maso, G., An Introduction to \(\Gamma \)-Convergence (1993), Birkhäuser: Birkhäuser Boston · Zbl 0816.49001
[21] Braides, A., Approximation of Free-Discontinuity Problems (1998), Springer-Verlag: Springer-Verlag Berlin · Zbl 0909.49001
[22] Iurlano, F., A density result for \(G S B D\) and its application to the approximation of brittle fracture energies, Calc. Var. Partial Differential Equation, 51, 315-342 (2014) · Zbl 1297.49080
[23] Chambolle, A.; Crismale, V., A density result in \(G S B D^p\) with applications to the approximation of brittle fracture energies, Arch. Ration. Mech. Anal., 232, 3, 1329-1378 (2019) · Zbl 1411.74050
[24] Bellettini, G.; Coscia, A., Discrete approximation of a free discontinuity problem, Numer. Funct. Anal. Optim., 15, 3-4, 201-224 (1994) · Zbl 0806.49002
[25] Chambolle, A., An approximation result for special functions with bounded deformation, J. Math. Pures Appl. (9), 83, 7, 929-954 (2004) · Zbl 1084.49038
[26] Chambolle, A.; Conti, S.; Francfort, G. A., Approximation of a brittle fracture energy with a constraint of non-interpenetration, Arch. Ration. Mech. Anal., 228, 3, 867-889 (2018) · Zbl 1391.35366
[27] Fonseca, I.; Mantegazza, C., Second order singular perturbation models for phase transitions, SIAM J. Math. Anal., 31, 5, 1121-1143 (2000) · Zbl 0958.49007
[28] Bach, A., Anisotropic free-discontinuity functionals as the \(\Gamma \)-limit of second-order elliptic functionals, ESAIM Control Optim. Calc. Var., 24, 3, 1107-1140 (2018) · Zbl 1412.49032
[29] Fonseca, I.; Müller, S., Quasi-convex integrands and lower semicontinuity in \(L^1\), SIAM J. Math. Anal., 23, 5, 1081-1098 (1992) · Zbl 0764.49012
[30] Bazilevs, Y.; Beirão da Veiga, L.; Cottrell, J. A.; Hughes, T. J.R.; Sangalli, G., Isogeometric analysis: approximation, stability and error estimates for \(h\)-refined meshes, Math. Models Methods Appl. Sci., 16, 7, 1031-1090 (2006) · Zbl 1103.65113
[31] Beirão da Veiga, L.; Buffa, A.; Sangalli, G.; Vázquez, R., An introduction to the numerical analysis of isogeometric methods, (Numerical Simulation in Physics and Engineering. Numerical Simulation in Physics and Engineering, SEMA SIMAI Springer Ser., vol. 9 (2016), Springer), 3-69 · Zbl 1351.65086
[32] Schumaker, L. L., Spline Functions: Basic Theory (2007), Cambridge Mathematical Library. Cambridge University Press: Cambridge Mathematical Library. Cambridge University Press Cambridge · Zbl 1123.41008
[33] Artina, M.; Fornasier, M.; Micheletti, S.; Perotto, S., Anisotropic mesh adaptation for crack detection in brittle materials, SIAM J. Sci. Comput., 37, 4, B633-B659 (2015) · Zbl 1325.74134
[34] Bourdin, B.; Chambolle, A., Implementation of an adaptive finite-element approximation of the Mumford-Shah functional, Numer. Math., 85, 4, 609-646 (2000) · Zbl 0961.65062
[35] Burke, S.; Ortner, C.; Süli, E., An adaptive finite element approximation of a variational model of brittle fracture, SIAM J. Numer. Anal., 48, 3, 980-1012 (2010) · Zbl 1305.74080
[36] Hennig, P.; Müller, S.; Kästner, M., Bézier extraction and adaptive refinement of truncated hierarchical NURBS, Comput. Methods Appl. Mech. Engrg., 305, 316-339 (2016) · Zbl 1425.65031
[37] Hesch, C.; Schuß, S.; Dittmann, M.; Franke, M.; Weinberg, K., Isogeometric analysis and hierarchical refinement for higher-order phase-field models, Comput. Methods Appl. Mech. Engrg., 303, 185-207 (2016) · Zbl 1425.74464
[38] Paul, K.; Zimmermann, C.; Mandadapu, K. K.; Hughes, T. J.R.; Landis, C. M.; Sauer, R. A., An adaptive space-time phase field formulation for dynamic fracture of brittle shells based on LR NURBS, Comput. Mech. (2019)
[39] Ciarlet, P. G., The finite element method for elliptic problems, (Studies in Mathematics and Its Applications, vol. 4 (1978), North-Holland Publishing Co.: North-Holland Publishing Co. Amsterdam) · Zbl 0383.65058
[40] Cortesani, G.; Toader, R., A density result in SBV with respect to non-isotropic energies, Nonlinear Anal., 38, 5, 585-604 (1999) · Zbl 0939.49024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.