×

zbMATH — the first resource for mathematics

Galois representations arising from some compact Shimura varieties. (English) Zbl 1269.11053
The article under review establishes new, very deep and very important existence results for Galois representations attached to automorphic forms, as predicted by the Langlands philosophy. The main theorem is the following:
Let \(F\) be a CM field and let \(\Pi\) be a regular algebraic conjugate self-dual cuspidal automorphic representation of \(\mathrm{GL}_m(\mathbb{A}_F)\) for some integer \(m \geq 2\). If \(m\) is even, then assume in addition a condition called ‘slight regularity’ (referred to as ‘Shin regularity’ in later work by other authors). Then for any prime number \(\ell\) and for any choice of isomorphism \(\iota_\ell: \overline{\mathbb{Q}}_\ell \to \mathbb{C}\) there exists a continuous semisimple Galois representation \[ R_{\ell,\iota_\ell}(\Pi): \mathrm{Gal}(\overline{F}/F) \to \mathrm{GL}_m(\overline{\mathbb{Q}}_\ell) \] satisfying a long list of properties, including the following ones: the representation \(\Pi\) corresponds to \(R_{\ell,\iota_\ell}(\Pi)\) under the local Langlands correspondence at all finite places of \(F\) not dividing \(\ell\), that is, ‘local-global compatibility’ is fulfilled. If \(\lambda\) is a finite place of \(F\) above \(\ell\), then the Galois representation \(R_{\ell,\iota_\ell}(\Pi)\) is potentially semistable at \(\lambda\) with distinct and explicit Hodge-Tate weights. If, moreover, \(\Pi\) is unramified at \(\lambda\), then \(R_{\ell,\iota_\ell}(\Pi)\) is crystalline at \(\lambda\).
In fact, the author obtains the stronger result that the \(R_{\ell,\iota_\ell}(\Pi)\) form a compatible system of Galois representations. A corollary of the main result is the Ramanujan-Petersson conjecture for \(\Pi\), that is, \(\Pi\) is tempered at all finite places of \(F\). A result similar to the main theorem can be proved, when \(F\) is a totally real field, by adapting a technique applied by R. Taylor in [Ann. Fac. Sci. Toulouse, VI. Sér., Math. 13, No. 1, 73–119 (2004; Zbl 1074.11030)] (see Remark 7.6 of the present article).
The main theorem of the article under review strengthens previous results by R. E. Kottwitz [Invent. Math. 108, No. 3, 653–665 (1992; Zbl 0765.22011)], L. Clozel [Publ. Math., Inst. Hautes Étud. Sci. 73, 97–145 (1991; Zbl 0739.11020)], M. Harris and R. Taylor [The geometry and cohomology of some simple Shimura varieties. Princeton, NJ: Princeton University Press (2001; Zbl 1036.11027)], and R. Taylor and T. Yoshida [J. Am. Math. Soc. 20, No. 2, 467–493 (2007; Zbl 1210.11118)], which need the extra assumption that \(\Pi\) is square integrable at some finite place. However, in that case the irreducibility of \(R_{\ell,\iota_\ell}(\Pi)\) is known (it is not established in the article under review).
Results similar to the main result were proved by S. Morel [On the cohomology of certain noncompact Shimura varieties. With an appendix by Robert Kottwitz. Princeton, NJ: Princeton University Press (2010; Zbl 1233.11069)] and L. Clozel, M. Harris and J.-P. Labesse [“Construction of automorphic Galois representations. I”, in: Stabilization of the trace formula, Shimura varieties, and arithmetic applications. Volume 1: On the stabilization of the trace formula. Somerville, MA: International Press, 497–523 (2011; Zbl 1255.11027)], however, without establishing local-global compatibility at ramified primes away from \(\ell\).
G. Chenevier and M. Harris [“Construction of automorphic Galois representations. II”, Camb. Math. J. 1, 53–73 (2013)] managed to remove the ‘slight regularity’ assumption (in the case of even \(m\)) by an \(\ell\)-adic deformation argument, however, at the expense of having local-global compatibility only up to semisimplification at primes not above \(\ell\).
The strategy of the proof of the main result of the article, which is technically very demanding, is summarized in quite some detail in the introduction. In this review we content ourselves with some generalities: The conditions on \(\Pi\) imply that it gives rise to an automorphic representation of some unitary group, and \(R_{\ell,\iota_\ell}(\Pi)\) is hence realized in the \(\ell\)-adic cohomology of certain Shimura varieties of unitary type. The extra condition in the case of even \(m\) comes from the fact that then the Galois representation lies in the endoscopic part of the cohomology. The computation of the cohomology of the Shimura variety is through the use of certain Igusa varieties and builds on the work of Harris-Taylor cited above and E. Mantovan (e.g. [Fields Institute Communications 60, 61–83 (2011; Zbl 1258.11069)]). The computation of the relevant part of the cohomology of the Igusa variety is at the center of the present article and relies on earlier work of the author [Duke Math. J. 146, No. 3, 509–568 (2009; Zbl 1218.11061)] and [J. Inst. Math. Jussieu 9, No. 4, 847–895 (2010; Zbl 1206.22011)]. Let us finally point out that the fundamental lemma proved by B. C. Ngô enters the proof essentially [Publ. Math., Inst. Hautes Étud. Sci. 111, 1–271 (2010; Zbl 1200.22011)].

MSC:
11F80 Galois representations
11G18 Arithmetic aspects of modular and Shimura varieties
11F03 Modular and automorphic functions
14G35 Modular and Shimura varieties
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. Arthur and L. Clozel, Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula, Princeton, NJ: Princeton Univ. Press, 1989, vol. 120. · Zbl 0682.10022 · doi:10.1515/9781400882403
[2] J. Arthur, ”On a family of distributions obtained from orbits,” Canad. J. Math., vol. 38, iss. 1, pp. 179-214, 1986. · Zbl 0593.22015 · doi:10.4153/CJM-1986-009-4
[3] J. Arthur, ”The invariant trace formula. I. Local theory,” J. Amer. Math. Soc., vol. 1, iss. 2, pp. 323-383, 1988. · Zbl 0682.10021 · doi:10.2307/1990920
[4] J. Arthur, ”The invariant trace formula. II. Global theory,” J. Amer. Math. Soc., vol. 1, iss. 3, pp. 501-554, 1988. · Zbl 0667.10019 · doi:10.2307/1990948
[5] J. Arthur, ”The \(L^2\)-Lefschetz numbers of Hecke operators,” Invent. Math., vol. 97, iss. 2, pp. 257-290, 1989. · Zbl 0692.22004 · doi:10.1007/BF01389042 · eudml:143702
[6] J. Arthur, ”An introduction to the trace formula,” in Harmonic Analysis, the Trace Formula, and Shimura Varieties, Providence, RI: Amer. Math. Soc., 2005, vol. 4, pp. 1-263. · Zbl 1152.11021
[7] A. I. Badulescu, ”Jacquet-Langlands et unitarisabilité,” J. Inst. Math. Jussieu, vol. 6, iss. 3, pp. 349-379, 2007. · Zbl 1159.22005 · doi:10.1017/S1474748007000035
[8] Automorphic Forms, Representations, and \(L\)-Functions, Borel, A. and Casselman, Eds., Providence, RI: American. Math. Soc., 1979, vol. 33.2.
[9] V. G. Berkovich, ”Étale cohomology for non-Archimedean analytic spaces,” Inst. Hautes Études Sci. Publ. Math., iss. 78, pp. 5-161 (1994), 1993. · Zbl 0804.32019 · doi:10.1007/BF02712916 · numdam:PMIHES_1993__78__5_0 · eudml:104093
[10] A. Borel, ”Automorphic \(L\)-functions,” in Automorphic Forms, Representations and \(L\)-Functions, Providence, R.I., 1979, pp. 27-61. · Zbl 0412.10017
[11] B. Pascal, ”Monodromie du faisceau pervers des cycles évanescents de quelques variétés de Shimura simples,” Invent. Math., vol. 177, iss. 2, pp. 239-280, 2009. · Zbl 1172.14016 · doi:10.1007/s00222-009-0183-9
[12] D. Blasius and D. Ramakrishnan, ”Maass forms and Galois representations,” in Galois Groups over \({\mathbf Q}\), New York, 1989, pp. 33-77. · Zbl 0699.10043
[13] D. Blasius and J. D. Rogawski, ”Motives for Hilbert modular forms,” Invent. Math., vol. 114, iss. 1, pp. 55-87, 1993. · Zbl 0829.11028 · doi:10.1007/BF01232663 · eudml:144142
[14] A. Borel and N. Wallach, Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, 2nd. Edition, Providence, RI: Amer. Math. Soc., 2000, vol. 67. · Zbl 0980.22015
[15] I. N. Bernstein and A. V. Zelevinsky, ”Induced representations of reductive \(\mathfrakp\)-adic groups. I,” Ann. Sci. École Norm. Sup., vol. 10, iss. 4, pp. 441-472, 1977. · Zbl 0412.22015 · numdam:ASENS_1977_4_10_4_441_0 · eudml:82002
[16] H. Carayol, ”Non-abelian Lubin-Tate theory,” in Automorphic forms, Shimura varieties, and \(L\)-functions, Vol. II, Boston, MA, 1990, pp. 15-39. · Zbl 0704.11049
[17] L. Clozel and P. Delorme, ”Le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs. II,” Ann. Sci. École Norm. Sup., vol. 23, iss. 2, pp. 193-228, 1990. · Zbl 0724.22012 · numdam:ASENS_1990_4_23_2_193_0 · eudml:82271
[18] G. Chenevier and M. Harris, Construction of automorphic Galois representations, II. · Zbl 1310.11062 · doi:10.4310/CJM.2013.v1.n1.a2 · people.math.jussieu.fr
[19] L. Clozel, M. Harris, and J. -P. Labesse, Construction of automorphic Galois representations, I. · www.institut.math.jussieu.fr
[20] L. Clozel, M. Harris, and J. -P. Labesse, Endoscopic transfer. · www.institut.math.jussieu.fr
[21] L. Clozel and J. -P. Labesse, Changement de base pour les représentations cohomologiques des certaines groupes unitaires, 1999.
[22] L. Clozel, Identités de caractères en la place archimédienne. · www.institut.math.jussieu.fr
[23] L. Clozel, ”Théorème d’Atiyah-Bott pour les variétés \(\mathfrak{ p}\)-adiques et caractères des groupes réductifs,” Mém. Soc. Math. France (N.S.), vol. 15, pp. 39-64, 1984. · Zbl 0555.22003 · numdam:MSMF_1984_2_15__39_0 · eudml:94845
[24] L. Clozel, ”Motifs et formes automorphes: Applications du principe de fontorialité,” in Automorphic Forms, Shimura Varieties, and \(L\)-Functions, Vol. I, Boston, MA, 1990, pp. 77-160. · Zbl 0705.11029
[25] L. Clozel, ”Représentations galoisiennes associees aux représentations automorphes autoduales de \({ GL}(n)\),” Inst. Hautes Études Sci. Publ. Math., vol. 73, pp. 97-145, 1991. · Zbl 0739.11020 · www.numdam.org
[26] Automorphic Forms, Shimura Varieties, and \(L\)-Functions, Clozel, L. and Milne, J., Eds., Ann Arbor: Academic Press, 1990, vol. 10.
[27] P. Deligne, D. Kazhdan, and M. -F. Vignéras, ”Représentations des algèbres centrales simples \(p\)-adiques,” in Representations of Reductive Groups over a Local Field, Paris: Hermann, 1984, pp. 33-117. · Zbl 0583.22009
[28] P. Delorme and P. Mezo, ”A twisted invariant Paley-Wiener theorem for real reductive groups,” Duke Math. J., vol. 144, iss. 2, pp. 341-380, 2008. · Zbl 1189.22005 · doi:10.1215/00127094-2008-039
[29] L. Fargues, ”Cohomologie des espaces de modules de groupes \(p\)-divisibles et correspondances de Langlands locales,” Astérisque, vol. 291, pp. 1-199, 2004. · Zbl 1196.11087
[30] T. C. Hales, ”A simple definition of transfer factors for unramified groups,” in Representation Theory of Groups and Algebras, Providence, RI: Amer. Math. Soc., 1993, vol. 145, pp. 109-134. · Zbl 0828.22015
[31] T. C. Hales, ”On the fundamental lemma for standard endoscopy: reduction to unit elements,” Canad. J. Math., vol. 47, iss. 5, pp. 974-994, 1995. · Zbl 0840.22032 · doi:10.4153/CJM-1995-051-5
[32] M. Harris, ”Local Langlands correspondences and vanishing cycles on Shimura varieties,” in European Congress of Mathematics, Vol. I, Basel, 2001, pp. 407-427. · Zbl 1025.11038
[33] M. Harris, ”The local Langlands correspondence: notes of (half) a course at the IHP Spring 2000,” Astérisque, vol. 298, pp. 17-145, 2005. · Zbl 1025.11038
[34] G. Henniart, ”Une preuve simple des conjectures de Langlands pour \({ GL}(n)\) sur un corps \(p\)-adique,” Invent. Math., vol. 139, iss. 2, pp. 439-455, 2000. · Zbl 1048.11092 · doi:10.1007/s002220050012
[35] M. J. Hopkins and B. H. Gross, ”Equivariant vector bundles on the Lubin-Tate moduli space,” in Topology and Representation Theory, Providence, RI, 1994, pp. 23-88. · Zbl 0807.14037
[36] M. Harris and R. Taylor, The Geometry and Cohomology of Some Simple Shimura Varieties, Princeton, NJ: Princeton Univ. Press, 2001, vol. 151. · Zbl 1036.11027 · doi:10.1515/9781400837205
[37] H. Jacquet and J. A. Shalika, ”On Euler products and the classification of automorphic representations. I,” Amer. J. Math., vol. 103, iss. 3, pp. 499-558, 1981. · Zbl 0473.12008 · doi:10.2307/2374103
[38] H. Jacquet and J. A. Shalika, ”On Euler products and the classification of automorphic forms. II,” Amer. J. Math., vol. 103, iss. 4, pp. 777-815, 1981. · Zbl 0491.10020 · doi:10.2307/2374050
[39] A. W. Knapp, ”Local Langlands correspondence: the Archimedean case,” in Motives, Providence, RI, 1994, pp. 393-410. · Zbl 0811.11071
[40] R. E. Kottwitz, ”Sign changes in harmonic analysis on reductive groups,” Trans. Amer. Math. Soc., vol. 278, iss. 1, pp. 289-297, 1983. · Zbl 0538.22010 · doi:10.2307/1999316
[41] R. E. Kottwitz, ”Stable trace formula: cuspidal tempered terms,” Duke Math. J., vol. 51, iss. 3, pp. 611-650, 1984. · Zbl 0576.22020 · doi:10.1215/S0012-7094-84-05129-9
[42] R. E. Kottwitz, ”Isocrystals with additional structure,” Compositio Math., vol. 56, iss. 2, pp. 201-220, 1985. · Zbl 0597.20038 · numdam:CM_1985__56_2_201_0 · eudml:89735
[43] R. E. Kottwitz, ”Stable trace formula: elliptic singular terms,” Math. Ann., vol. 275, iss. 3, pp. 365-399, 1986. · Zbl 0577.10028 · doi:10.1007/BF01458611 · eudml:164156
[44] R. E. Kottwitz, ”Tamagawa numbers,” Ann. of Math., vol. 127, iss. 3, pp. 629-646, 1988. · Zbl 0678.22012 · doi:10.2307/2007007
[45] R. E. Kottwitz, ”Shimura varieties and \(\lambda\)-adic representations,” in Automorphic Forms, Shimura Varieties, and \(L\)-Functions, Vol. I, Boston, MA, 1990, pp. 161-209. · Zbl 0743.14019
[46] R. E. Kottwitz, ”On the \(\lambda\)-adic representations associated to some simple Shimura varieties,” Invent. Math., vol. 108, iss. 3, pp. 653-665, 1992. · Zbl 0765.22011 · doi:10.1007/BF02100620 · eudml:144008
[47] R. E. Kottwitz, ”Points on some Shimura varieties over finite fields,” J. Amer. Math. Soc., vol. 5, iss. 2, pp. 373-444, 1992. · Zbl 0796.14014 · doi:10.2307/2152772
[48] R. E. Kottwitz and J. D. Rogawski, ”The distributions in the invariant trace formula are supported on characters,” Canad. J. Math., vol. 52, iss. 4, pp. 804-814, 2000. · Zbl 0991.22014 · doi:10.4153/CJM-2000-034-6
[49] R. E. Kottwitz and D. Shelstad, ”Foundations of twisted endoscopy,” Astérisque, vol. 255, p. vi, 1999. · Zbl 0958.22013
[50] J. -P. Labesse, Changement de base CM et séries discrètes. · www.institut.math.jussieu.fr
[51] J. -P. Labesse, ”Pseudo-coefficients très cuspidaux et \(K\)-théorie,” Math. Ann., vol. 291, iss. 4, pp. 607-616, 1991. · Zbl 0789.22028 · doi:10.1007/BF01445230 · eudml:164889
[52] J. -P. Labesse, ”Cohomologie, stabilisation et changement de base,” Astérisque, vol. 257, p. vi, 1999. · Zbl 1024.11034
[53] R. P. Langlands, Les Débuts d’une Formule des Traces Stable, Paris: Université de Paris VII U.E.R. de Mathématiques, 1983, vol. 13. · Zbl 0532.22017
[54] R. P. Langlands, ”On the classification of irreducible representations of real algebraic groups,” in Representation Theory and Harmonic Analysis on Semisimple Lie Groups, Providence, RI: Amer. Math. Soc., 1989, vol. 31, pp. 101-170. · Zbl 0741.22009
[55] K. -W. Lan, Arithmetic compactifications of PEL-type Shimura varieties, 2008. · Zbl 1284.14004
[56] G. Laumon and B. C. Ngô, ”Le lemme fondamental pour les groupes unitaires,” Ann. of Math., vol. 168, iss. 2, pp. 477-573, 2008. · Zbl 1179.22019 · doi:10.4007/annals.2008.168.477 · annals.math.princeton.edu
[57] The Zeta Functions of Picard Modular Surfaces, Langlands, R. P. and Ramakrishnan, D., Eds., Montréal, QC: Univ. Montréal Press, 1992. · Zbl 0752.00024
[58] R. P. Langlands and D. Shelstad, ”On the definition of transfer factors,” Math. Ann., vol. 278, iss. 1-4, pp. 219-271, 1987. · Zbl 0644.22005 · doi:10.1007/BF01458070 · eudml:164291
[59] R. P. Langlands and D. Shelstad, ”Descent for transfer factors,” in The Grothendieck Festschrift, Vol. II, Boston, MA: Birkhäuser, 1990, vol. 87, pp. 485-563. · Zbl 0743.22009
[60] E. Mantovan, \(l\)-adic étale cohomology of PEL type shimura varieties with non-trivial coefficients. · Zbl 1258.11069 · www.its.caltech.edu
[61] E. Mantovan, ”On certain unitary group Shimura varieties,” Astérisque, vol. 291, pp. 201-331, 2004. · Zbl 1062.11036
[62] E. Mantovan, ”On the cohomology of certain PEL-type Shimura varieties,” Duke Math. J., vol. 129, iss. 3, pp. 573-610, 2005. · Zbl 1112.11033 · doi:10.1215/S0012-7094-05-12935-0
[63] E. Mantovan, ”On non-basic Rapoport-Zink spaces,” Ann. Sci. Éc. Norm. Supér., vol. 41, iss. 5, pp. 671-716, 2008. · Zbl 1236.11101 · smf4.emath.fr
[64] A. Minguez, Unramified representations of unitary groups. · Zbl 0304.53033 · www.institut.math.jussieu.fr
[65] S. Morel, Complexes d’intersection des compactifications de Baily-Borel: le cas des groupes unitaires sur \(\mathbbQ\), 2005.
[66] S. Morel, ”Complexes pondérés sur les compactifications de Baily-Borel: le cas des variétés de Siegel,” J. Amer. Math. Soc., vol. 21, iss. 1, pp. 23-61, 2008. · Zbl 1225.11073 · doi:10.1090/S0894-0347-06-00538-8
[67] S. Morel, On the Cohomology of Certain Non-Compact Shimura Varieties, Princeton, NJ: Princeton Univ. Press, 2010, vol. 173. · Zbl 1233.11069
[68] C. Moeglin and J. -L. Waldspurger, ”Le spectre résiduel de \({ GL}(n)\),” Ann. Sci. École Norm. Sup., vol. 22, iss. 4, pp. 605-674, 1989. · Zbl 0696.10023 · numdam:ASENS_1989_4_22_4_605_0 · eudml:82264
[69] B. C. Ngô, ”Le lemme fondamental pour les algèbres de Lie,” Publ. Math. Inst. Hautes Études Sci., vol. 111, pp. 1-169, 2010. · Zbl 1200.22001 · doi:10.1007/s10958-008-0006-3
[70] T. Ono, ”On Tamagawa numbers,” in Algebraic Groups and Discontinuous Subgroups, Providence, R.I., 1966, pp. 122-132. · Zbl 0223.20050
[71] M. Rapoport, ”Non-Archimedean period domains,” in Proceedings of the International Congress of Mathematicians, Vol. 1, 2, Basel, 1995, pp. 423-434. · Zbl 0874.11046
[72] J. D. Rogawski, Automorphic Representations of Unitary Groups in Three Variables, Princeton, NJ: Princeton Univ. Press, 1990, vol. 123. · Zbl 0724.11031 · doi:10.1515/9781400882441
[73] J. D. Rogawski, ”Analytic expression for the number of points mod \(p\),” in The Zeta Functions of Picard Modular Surfaces, Montreal, QC: Univ. Montréal, 1992, pp. 65-109. · Zbl 0821.14015
[74] M. Rapoport and M. Richartz, ”On the classification and specialization of \(F\)-isocrystals with additional structure,” Compositio Math., vol. 103, iss. 2, pp. 153-181, 1996. · Zbl 0874.14008 · numdam:CM_1996__103_2_153_0 · eudml:90466
[75] M. Rapoport and T. Zink, Period Spaces for \(p\)-Divisible Groups, Princeton, NJ: Princeton Univ. Press, 1996, vol. 141. · Zbl 0873.14039 · doi:10.1515/9781400882601
[76] T. Saito, ”Hilbert modular forms and \(p\)-adic Hodge theory,” Compos. Math., vol. 145, iss. 5, pp. 1081-1113, 2009. · Zbl 1259.11060 · doi:10.1112/S0010437X09004175 · arxiv:math/0612077
[77] D. Shelstad, ”\(L\)-indistinguishability for real groups,” Math. Ann., vol. 259, iss. 3, pp. 385-430, 1982. · Zbl 0506.22014 · doi:10.1007/BF01456950 · eudml:163641
[78] S. W. Shin, ”Counting points on Igusa varieties,” Duke Math. J., vol. 146, iss. 3, pp. 509-568, 2009. · Zbl 1218.11061 · doi:10.1215/00127094-2009-004
[79] S. W. Shin, ”Counting points on Igusa varieties,” Duke Math. J., vol. 146, iss. 3, pp. 509-568, 2009. · Zbl 1218.11061 · doi:10.1215/00127094-2009-004
[80] A. J. Silberger, ”The Langlands quotient theorem for \(p\)-adic groups,” Math. Ann., vol. 236, iss. 2, pp. 95-104, 1978. · Zbl 0362.20029 · doi:10.1007/BF01351383 · eudml:163160
[81] C. M. Sorensen, A patching lemma. · Zbl 0305.02072 · www.math.princeton.edu
[82] S. A. Salamanca-Riba, ”On the unitary dual of real reductive Lie groups and the \(A_g(\lambda)\) modules: the strongly regular case,” Duke Math. J., vol. 96, iss. 3, pp. 521-546, 1999. · Zbl 0941.22014 · doi:10.1215/S0012-7094-99-09616-3
[83] M. Strauch, ”On the Jacquet-Langlands correspondence in the cohomology of the Lubin-Tate deformation tower,” Astérisque, vol. 298, pp. 391-410, 2005. · Zbl 1073.22010 · smf4.emath.fr
[84] J. Tate, ”Number theoretic background,” in Automorphic Forms, Representations and \(L\)-Functions, Providence, R.I., 1979, pp. 3-26. · Zbl 0422.12007
[85] R. Taylor, ”On Galois representations associated to Hilbert modular forms,” Invent. Math., vol. 98, iss. 2, pp. 265-280, 1989. · Zbl 0705.11031 · doi:10.1007/BF01388853 · eudml:143729
[86] R. Taylor, ”Galois representations,” Ann. Fac. Sci. Toulouse Math., vol. 13, iss. 1, pp. 73-119, 2004. · Zbl 1074.11030 · doi:10.5802/afst.1065 · numdam:AFST_2004_6_13_1_73_0 · eudml:73621 · arxiv:math/0212403
[87] T. Tsuji, ”\(p\)-adic étale cohomology and crystalline cohomology in the semi-stable reduction case,” Invent. Math., vol. 137, iss. 2, pp. 233-411, 1999. · Zbl 0945.14008 · doi:10.1007/s002220050330
[88] R. Taylor and T. Yoshida, ”Compatibility of local and global Langlands correspondences,” J. Amer. Math. Soc., vol. 20, iss. 2, pp. 467-493, 2007. · Zbl 1210.11118 · doi:10.1090/S0894-0347-06-00542-X · arxiv:math/0412357
[89] G. van Dijk, ”Computation of certain induced characters of \(\mathfrakp\)-adic groups,” Math. Ann., vol. 199, pp. 229-240, 1972. · Zbl 0231.22018 · doi:10.1007/BF01429876 · eudml:162326
[90] D. A. Vogan Jr. and G. J. Zuckerman, ”Unitary representations with nonzero cohomology,” Compositio Math., vol. 53, iss. 1, pp. 51-90, 1984. · Zbl 0692.22008 · numdam:CM_1984__53_1_51_0 · eudml:89677
[91] N. Wallach, Real Reductive Groups I, Boston, MA: Academic Press Inc., 1988, vol. 132. · Zbl 0666.22002
[92] J. -L. Waldspurger, ”Le lemme fondamental implique le transfert,” Compositio Math., vol. 105, iss. 2, pp. 153-236, 1997. · Zbl 0871.22005 · doi:10.1023/A:1000103112268
[93] J. -L. Waldspurger, ”Endoscopie et changement de caractéristique,” J. Inst. Math. Jussieu, vol. 5, iss. 3, pp. 423-525, 2006. · Zbl 1102.22010 · doi:10.1017/S1474748006000041
[94] A. V. Zelevinsky, ”Induced representations of reductive \(\mathfrakp\)-adic groups. II. On irreducible representations of \({ GL}(n)\),” Ann. Sci. École Norm. Sup., vol. 13, iss. 2, pp. 165-210, 1980. · Zbl 0441.22014 · numdam:ASENS_1980_4_13_2_165_0 · eudml:82048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.