×

zbMATH — the first resource for mathematics

A second order PVM flux limiter method. Application to magnetohydrodynamics and shallow stratified flows. (English) Zbl 1349.76314
Summary: In this work we propose a second order flux limiter finite volume method, named PVM-2U-FL, that only uses information of the two external waves of the hyperbolic system. This method could be seen as a natural extension of the well known WAF method introduced by E. F. Toro [Proc. R. Soc. Lond., Ser. A 423, No. 1865, 401–418 (1989; Zbl 0674.76060)]. We prove that independently of the number of unknowns of the 1D system, it recovers the second order accuracy at regular zones, while in presence of discontinuities, the scheme degenerates to PVM-2U method, which can be seen as an improvement of the HLL method (see [the first and the second author, SIAM J. Sci. Comput. 34, No. 4, A2173-A2196 (2012; Zbl 1253.65167); P. Degond et al., C. R. Acad. Sci., Paris, Sér. I, Math. 328, No. 6, 479–483 (1999; Zbl 0933.65101)]). Another interesting property of the method is that it does not need any spectral decomposition of the Jacobian or Roe matrix associated to the flux function. Therefore, it can be easily applied to systems with a large number of unknowns or in situations where no analytical expression of the eigenvalues or eigenvectors are known. In this work, we apply the proposed method to magnetohydrodynamics and to stratified multilayer flows.comparison with the two-waves WAF and HLL-MUSCL methods are also presented. The numerical results show that PVM-2U-FL is the most efficient and accurate among them.

MSC:
76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76W05 Magnetohydrodynamics and electrohydrodynamics
Software:
PVM ; RIEMANN; GFORCE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Balsara, D. S.; Spicer, D. S., A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations, J. Comput. Phys., 149, 270-292, (1999) · Zbl 0936.76051
[2] Balsara, D. S., Multidimensional HLLE Riemann solver: application to Euler and magnetohydrodynamic flows, J. Comput. Phys., 229, 1970-1993, (2010) · Zbl 1303.76140
[3] Brio, M.; Wu, C. C., An upwind differencing scheme for the equations of ideal magnetohydrodynamics, J. Comput. Phys., 75, 400-422, (1988) · Zbl 0637.76125
[4] Cargo, P.; Gallice, G., Roe matrices for ideal MHD and systematic construction of roe matrices for systems of conservation laws, J. Comput. Phys., 136, 446-466, (1997) · Zbl 0919.76053
[5] Castro, M. J.; LeFloch, P. G.; Muñoz, M. L.; Parés, C., Why many theories of shock waves are necessary: convergence error in formally path-consistent schemes, J. Comput. Phys., 3227, 8107-8129, (2008) · Zbl 1176.76084
[6] Castro, M. J.; Fernández-Nieto, E. D., A class of computationally fast first order finite volume solvers: PVM methods, SIAM J. Sci. Comput., 34, 4, 2173-2196, (2012) · Zbl 1253.65167
[7] Castro, M. J.; Pardo, A.; Parés, C.; Toro, E. F., On some fast well-balanced first order solvers for nonconservative systems, Math. Comput., 79, 271, 1427-1472, (2010) · Zbl 1369.65107
[8] Davis, S. F., Simplified second-order Godunov-type methods, SIAM J. Sci. Stat. Comput., 9, 445-473, (1988) · Zbl 0645.65050
[9] Dal Maso, G.; LeFloch, P. G.; Murat, F., Definition and weak stability of nonconservative products, J. Math. Pures Appl., 74, 483-548, (1995) · Zbl 0853.35068
[10] Degond, P.; Peyrard, P. F.; Russo, G.; Villedieu, Ph., Polynomial upwind schemes for hyperbolic systems, C. R. Acad. Sci. Paris, 328, 479-483, (1999) · Zbl 0933.65101
[11] Einfeldt, B., On Godunov-type methods for gas dynamics, SIAM J. Numer. Anal., 25, 294-318, (1988) · Zbl 0642.76088
[12] Fernández-Nieto, E. D.; Narbona-Reina, G., Extension of waf type methods to non-homogeneous shallow water equations with pollutant, J. Sci. Comput., 36, 2, 193-217, (2008) · Zbl 1203.76094
[13] Harten, A.; Lax, P. D.; van Leer B, B., On upstream differencing and Godunov type schemes for hyperbolic conservation laws, SIAM Rev., 25, 1, 35-61, (1983) · Zbl 0565.65051
[14] Kolgan, N. E., Application of the minimum-derivative principle in the construction of finite-difference schemes for numerical analysis of discontinuous solutions in gas dynamics, Uch. Zap. TsaGI, 3, 6, 68-77, (1972), 137, 138
[15] Kolgan, N. E., Finite-difference schemes for computation of three dimensional solutions of gas dynamics and calculation of a flow over a body under an angle of attack, Uch. Zap. TsaGI, 6, 2, 1-6, (1975), 137, 138
[16] Parés, C.; Castro, M. J., On the well-balance property of roeʼs method for nonconservative hyperbolic systems. applications to shallow-water systems, M2AN, 38, 5, 821-852, (2004) · Zbl 1130.76325
[17] Parés, C., Numerical methods for nonconservative hyperbolic systems: a theoretical framework, SIAM J. Numer. Anal., 44, 1, 300-321, (2006) · Zbl 1130.65089
[18] Parés, C.; Muñoz Ruíz, M. L., On some difficulties of the numerical approximation of nonconservative hyperbolic systems, Bol. SEMA, 47, 23-52, (2009) · Zbl 1242.65169
[19] Loukili, Y.; Soulaymani, A., Numerical tracking of shallow water waves by the unstructured finite volume WAF approximation, Int. J. Comput. Methods Eng. Sci. Mech., 8, 2, 75-88, (2007) · Zbl 1388.76032
[20] Roe, P. L., Approximate Riemann solvers, parameter vectors and difference schemes, J. Comput. Phys., 43, 357-371, (1981) · Zbl 0474.65066
[21] Serna, S., A characteristic-based nonconvex entropy-fix upwind scheme for the ideal magnetohydrodynamics equations, J. Comput. Phys., 228, 4232-4247, (2009) · Zbl 1273.76332
[22] Schijf, J. B.; Schonfeld, J. C., Theoretical considerations on the motion of salt and fresh water, (Proc. of the Minn. Int. Hydraulics Conv., Joint Meeting IAHR and Hyd. Div. ASCE, (1953)), 321-333
[23] Toro, E. F., A weighted average flux method for hyperbolic conservation laws, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 423, 401-418, (1989) · Zbl 0674.76060
[24] Toro, E. F., Riemann problems and the WAF method for solving two-dimensional shallow water equations, Philos. Trans. R. Soc. Lond. A, 338, 43-68, (1992) · Zbl 0747.76027
[25] Toro, E. F., The weighted average flux method applied to the time dependent Euler equations, Philos. Trans. R. Soc. Lond. A, 341, 499-530, (1992) · Zbl 0767.76043
[26] Toro, E. F.; Millington, R. C.; Nejad, L. A.M., Primitive upwind numerical methods for hyperbolic partial differential equations, (Bruneau, C. H., Sixteenth International Conference on Numerical Methods for Fluids Dynamics, Lecture Notes in Physics, (1998), Springer-Verlag Berlin), 421-426
[27] Toro, E. F.; Billett, S. J., Centred TVD schemes for hyperbolic conservation laws, IMA J. Numer. Anal., 20, 47-79, (2000) · Zbl 0943.65100
[28] Toro, E. F., Shock-capturing methods for free-surface shallow flows, (2001), Wiley England · Zbl 0996.76003
[29] Toro, E. F.; Titarev, V. A., TVD fluxes for the high-order ADER schemes, J. Sci. Comput., 3, 24, 285-309, (2005) · Zbl 1096.76029
[30] Toro, E. F.; Titarev, V. A., ADER schemes for scalar hyperbolic conservation laws with source terms in three space dimensions, J. Comput. Phys., 202, 196-215, (2005) · Zbl 1061.65103
[31] Toro, E. F.; Titarev, V. A., MUSTA fluxes for systems of conservation laws, J. Comput. Phys., 216, 2, 403-429, (2006) · Zbl 1097.65091
[32] Rodionov, A. V., Complement to the Kolgan project, J. Comput. Phys., 231, 13, 4465-4468, (2012) · Zbl 1245.76002
[33] Torrilhon, M.; Balsara, D. S., High order WENO schemes: investigations on non-uniform convergence for MHD Riemann problems, J. Comput. Phys., 201, 586-600, (2004) · Zbl 1076.76050
[34] Toumi, I., A weak formulation of roe approximate Riemann solver, J. Comput. Phys., 102, 2, 360-373, (1992) · Zbl 0783.65068
[35] Van Leer, B., Toward the ultimate conservative difference scheme. III. upstream-centered finite-difference schemes for ideal compressible flows, J. Comput. Phys., 23, 7, 263-275, (1977) · Zbl 0339.76039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.