×

zbMATH — the first resource for mathematics

Notes on “Solution sets of inf-\(\alpha_{\mathcal{T}}\) fuzzy relational equations on complete Brouwerian lattices” and “Fuzzy relational equations on complete Brouwerian lattices”. (English) Zbl 1429.03177
Summary: This paper clarifies several hypotheses and results given in [Q.-q. Xiong and X.-p. Wang, Inf. Sci. 177, No. 21, 4757–4767 (2007; Zbl 1129.03032); ibid. 193, 141–152 (2012; Zbl 1248.03073)], which, in their current form, are confusing and need to be improved.

MSC:
03E72 Theory of fuzzy sets, etc.
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bělohlávek, R., Sup-t-norm and inf-residuum are one type of relational product: unifying framework and consequences, Fuzzy Sets Syst., 197, 45-58 (2012) · Zbl 1266.03056
[2] Birkhoff, G., Lattice Theory (1967), American Mathematical Society. Providence, Rhode Island · Zbl 0126.03801
[3] Bloch, I., Duality vs. adjunction for fuzzy mathematical morphology and general form of fuzzy erosions and dilations, Fuzzy Sets Syst., 160, 0, 1858-1867 (2009) · Zbl 1186.68489
[4] Cornejo, M. E.; Medina, J.; Ramírez-Poussa, E., A comparative study of adjoint triples, Fuzzy Sets Syst., 211, 1-14 (2013) · Zbl 1272.03111
[5] Cornejo, M. E.; Medina, J.; Ramírez-Poussa, E., Multi-adjoint algebras versus non-commutative residuated structures, Int. J. Approximate Reasoning, 66, 119-138 (2015) · Zbl 1350.06003
[6] Davey, B.; Priestley, H., Introduction to Lattices and Order (2002), Cambridge University Press · Zbl 1002.06001
[8] Díaz-Moreno, J. C.; Medina, J., Multi-adjoint relation equations: definition, properties and solutions using concept lattices, Inf. Sci., 253, 100-109 (2013) · Zbl 1320.68173
[9] Díaz-Moreno, J. C.; Medina, J., Using concept lattice theory to obtain the set of solutions of multi-adjoint relation equations, Inf. Sci., 266, 0, 218-225 (2014) · Zbl 1339.03043
[10] Gierz, G.; Hofmann, K.; Keimel, K.; Lawson, J.; Mislove, M.; Scott, D., Continuous Lattices and Domains (2003), Cambridge University Press
[11] Heijmans, H.; Ronse, C., The algebraic basis of mathematical morphology I. dilations and erosions, Comput. Vis. Graphics, Image Process., 50, 3, 245-295 (1990) · Zbl 0788.68158
[12] Nachtegael, M.; Sussner, P.; Mélange, T.; Kerre, E., On the role of complete lattices in mathematical morphology: from tool to uncertainty model, Inf. Sci., 181, 10, 1971-1988 (2011) · Zbl 1216.68326
[13] Sanchez, E., Resolution of composite fuzzy relation equations, Inf. Control, 30, 1, 38-48 (1976) · Zbl 0326.02048
[14] Sussner, P., Lattice fuzzy transforms from the perspective of mathematical morphology, Fuzzy Sets Syst., 288, 115-128 (2016) · Zbl 1374.06011
[15] Sussner, P.; Esmi, E. L., Morphological perceptrons with competitive learning: lattice-theoretical framework and constructive learning algorithm, Inf. Sci., 181, 10, 1929-1950 (2011) · Zbl 1216.68223
[16] Sussner, P.; Nachtegael, M.; Mélange, T.; Deschrijver, G.; Esmi, E.; Kerre, E., Interval-valued and intuitionistic fuzzy mathematical morphologies as special cases of L-fuzzy mathematical morphology, J. Math. Imaging Vis., 43, 1, 50-71 (2012) · Zbl 1255.68267
[17] Wang, Z., Corrigendum to “pseudo-t-norms and implication operators on a complete brouwerian lattice”[Fuzzy Sets and Systems 132 (2002) 113-124], Fuzzy Sets Syst., 153, 2, 295-296 (2005)
[18] Wang, Z.; Yu, Y., Pseudo-t-norms and implication operators on a complete brouwerian lattice, Fuzzy Sets Syst., 132, 1, 113-124 (2002) · Zbl 1013.03020
[19] Xiong, Q.-Q.; Wang, X.-P., Solution sets of fuzzy relational equations on complete Brouwerian lattices, Inf. Sci., 177, 21, 4757-4767 (2007) · Zbl 1129.03032
[20] Xiong, Q.-Q.; Wang, X.-P., Fuzzy relational equations on complete Brouwerian lattices, Inf. Sci., 193, 0, 141-152 (2012) · Zbl 1248.03073
[21] Yager, R. R., An approach to inference in approximate reasoning, Int. J. Man Mach. Stud., 13, 3, 323-338 (1980)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.