zbMATH — the first resource for mathematics

Nonlinear optimal perturbations in a Couette flow: bursting and transition. (English) Zbl 1284.76135
Summary: This paper provides the analysis of bursting and transition to turbulence in a Couette flow, based on the growth of nonlinear optimal disturbances. We use a global variational procedure to identify such optimal disturbances, defined as those initial perturbations yielding the largest energy growth at a given target time, for given Reynolds number and initial energy. The nonlinear optimal disturbances are found to be characterized by a basic structure, composed of inclined streamwise vortices along localized regions of low and high momentum. This basic structure closely recalls that found in boundary-layer flow [S. Cherubini et al., J. Fluid Mech. 689, 221–253 (2011; Zbl 1241.76246)], indicating that this structure may be considered the most ’energetic’ one at short target times. However, small differences in the shape of these optimal perturbations, due to different levels of the initial energy or target time assigned in the optimization process, may produce remarkable differences in their evolution towards turbulence. In particular, direct numerical simulations have shown that optimal disturbances obtained for large initial energies and target times induce bursting events, whereas for lower values of these parameters the flow is directly attracted towards the turbulent state. For this reason, the optimal disturbances have been classified into two classes, the highly dissipative and the short-path perturbations. Both classes lead the flow to turbulence, skipping the phases of streak formation and secondary instability which are typical of the classical transition scenario for shear flows. The dynamics of this transition scenario exploits three main features of the nonlinear optimal disturbances: (i) the large initial value of the streamwise velocity component; (ii) the streamwise dependence of the disturbance; (iii) the presence of initial inclined streamwise vortices. The short-path perturbations are found to spend a considerable amount of time in the vicinity of the edge state [T. M. Schneider et al., Phys. Rev. E 78, 037301 (2008)], whereas the highly dissipative optimal disturbances pass closer to the edge, but they are rapidly repelled away from it, leading the flow to high values of the dissipation rate. After this dissipation peak, the trajectories do not lead towards the turbulent attractor, but they spend some time in the vicinity of an unstable periodic orbit (UPO). This behaviour led us to conjecture that bursting events can be obtained not only as homoclinic orbits approaching the UPO, as recently found by L. van Veen and G. Kawahara [Phys. Rev. Lett. 107, 114501 (2011)], but also as heteroclinic orbits between the equilibrium solution on the edge and the UPO.

76E05 Parallel shear flows in hydrodynamic stability
76E30 Nonlinear effects in hydrodynamic stability
Full Text: DOI
[1] DOI: 10.1146/annurev.fl.23.010191.003125 · doi:10.1146/annurev.fl.23.010191.003125
[2] Stability and Transition in Shear Flows (2001) · Zbl 0966.76003
[3] DOI: 10.1103/PhysRevLett.105.154502 · doi:10.1103/PhysRevLett.105.154502
[4] Eur. J. Mech. B (Fluids) 513 pp 135– (2004)
[5] DOI: 10.1017/S0022112004009346 · Zbl 1065.76072 · doi:10.1017/S0022112004009346
[6] Phys. Rev. Lett. 98 pp 20450– (2007)
[7] DOI: 10.1063/1.1566753 · Zbl 1186.76556 · doi:10.1063/1.1566753
[8] DOI: 10.1103/PhysRevE.55.2023 · doi:10.1103/PhysRevE.55.2023
[9] DOI: 10.1017/S0022112090000829 · doi:10.1017/S0022112090000829
[10] DOI: 10.1103/PhysRevLett.106.134502 · doi:10.1103/PhysRevLett.106.134502
[11] DOI: 10.1017/S0022112009990863 · Zbl 1183.76688 · doi:10.1017/S0022112009990863
[12] DOI: 10.1017/S0022112009993703 · Zbl 1189.76192 · doi:10.1017/S0022112009993703
[13] DOI: 10.1103/PhysRevLett.91.224502 · doi:10.1103/PhysRevLett.91.224502
[14] DOI: 10.1017/S0022112067001740 · doi:10.1017/S0022112067001740
[15] DOI: 10.1017/S0022112008003285 · Zbl 1158.76010 · doi:10.1017/S0022112008003285
[16] DOI: 10.1017/S0022112007006301 · Zbl 1123.76022 · doi:10.1017/S0022112007006301
[17] DOI: 10.1146/annurev.fluid.39.050905.110308 · doi:10.1146/annurev.fluid.39.050905.110308
[18] DOI: 10.1017/S0022112001006243 · Zbl 0996.76034 · doi:10.1017/S0022112001006243
[19] DOI: 10.1063/1.1825451 · Zbl 1187.76248 · doi:10.1063/1.1825451
[20] DOI: 10.1063/1.3614480 · Zbl 06422722 · doi:10.1063/1.3614480
[21] DOI: 10.1143/JPSJ.70.703 · doi:10.1143/JPSJ.70.703
[22] DOI: 10.1017/S002211201000114X · Zbl 1197.76045 · doi:10.1017/S002211201000114X
[23] DOI: 10.1126/science.1100393 · doi:10.1126/science.1100393
[24] DOI: 10.1017/jfm.2011.412 · Zbl 1241.76246 · doi:10.1017/jfm.2011.412
[25] DOI: 10.1103/PhysRevE.82.066302 · doi:10.1103/PhysRevE.82.066302
[26] DOI: 10.1063/1.858386 · doi:10.1063/1.858386
[27] DOI: 10.1103/PhysRevLett.81.4140 · doi:10.1103/PhysRevLett.81.4140
[28] DOI: 10.1063/1.869185 · doi:10.1063/1.869185
[29] DOI: 10.1006/jcph.1996.0033 · Zbl 0849.76055 · doi:10.1006/jcph.1996.0033
[30] DOI: 10.1103/PhysRevLett.107.114501 · doi:10.1103/PhysRevLett.107.114501
[31] DOI: 10.1103/PhysRevLett.96.174101 · doi:10.1103/PhysRevLett.96.174101
[32] DOI: 10.1103/PhysRevE.78.037301 · doi:10.1103/PhysRevE.78.037301
[33] DOI: 10.1017/jfm.2012.192 · Zbl 1248.76075 · doi:10.1017/jfm.2012.192
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.