×

zbMATH — the first resource for mathematics

Mixed 2- and \(2^r\)-level fractional factorial split-plot designs with clear effects. (English) Zbl 1432.62260
Summary: Fractional factorial split-plot (FFSP) designs are often used when the levels of some factors are difficult to change or control. If not all experimental factors have the same number of levels, mixed-level designs are natural choices. This paper provides the necessary and sufficient conditions for mixed 2- and \(2^r\)-level FFSP designs of resolution III or IV to contain clear main effects or two-factor interaction components. Particularly, the sufficient conditions are proved through constructing the corresponding designs. The new results here are more general and include the last author and X. Chen’s results as special cases for \(r = 2\) [Metrika 75, No. 7, 953–962 (2012; Zbl 1410.62154); J. Stat. Plann. Inference 142, No. 7, 1789–1793 (2012; Zbl 1238.62089)].

MSC:
62K15 Factorial statistical designs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Addelman, S., Orthogonal main-effect plans for asymmetrical factorial experiments, Technometrics, 4, 21-46, (1962) · Zbl 0116.36704
[2] Ai, M. Y.; Zhang, R. C., \(s^{n - m}\) designs containing clear main effects or clear two-factor interactions, Statist. Probab. Lett., 69, 151-160, (2004) · Zbl 1062.62143
[3] Bingham, D.; Sitter, R. R., Minimum-aberration two-level fractional factorial split-plot designs, Technometrics, 41, 62-70, (1999)
[4] Bingham, D.; Sitter, R. R., Some theoretical results for fractional split-plot designs, Ann. Statist., 27, 1240-1255, (1999) · Zbl 0957.62065
[5] Chen, J., Some results on \(2^{n - k}\) fractional factorial designs and search for minimum aberration designs, Ann. Statist., 20, 2124-2141, (1992) · Zbl 0770.62063
[6] Chen, H.; Hedayat, A. S., \(2^{n - l}\) designs with weak minimum aberration, Ann. Statist., 24, 2536-2548, (1996) · Zbl 0867.62066
[7] Chen, H.; Hedayat, A. S., \(2^{n - m}\) designs with resolution III and IV containing clear two-factor interactions, J. Statist. Plann. Inference, 75, 147-158, (1998) · Zbl 0938.62081
[8] Chen, B. J.; Li, P. F.; Liu, M. Q.; Zhang, R. C., Some results on blocked regular 2-level fractional factorial designs with clear effects, J. Statist. Plann. Inference, 136, 4436-4449, (2006) · Zbl 1099.62082
[9] Cheng, C.-S.; Tsai, P. W., Optimal two-level regular fractional factorial block and split-plot designs, Biometrika, 96, 83-93, (2009) · Zbl 1162.62074
[10] Fries, A.; Hunter, W. G., Minimum aberration \(2^{k - p}\) designs, Technometrics, 22, 601-608, (1980) · Zbl 0453.62063
[11] Huang, P.; Chen, D.; Voelkel, J. O., Minimum-aberration two-level split-plot designs, Technometrics, 40, 314-326, (1998) · Zbl 1064.62552
[12] Montgomery, D. C., Design and Analysis of Experiments, (2013), John Wiley Sons: John Wiley Sons New York
[13] Tang, B.; Ma, F.; Ingram, D.; Wang, H., Bounds on the maximum number of clear two-factor interactions for \(2^{m - p}\) designs of resolution III and IV, Canad. J. Statist., 30, 127-136, (2002) · Zbl 0999.62059
[14] Tang, B.; Wu, C. F.J., Characterization of minimum aberration \(2^{n - k}\) designs in terms of their complementary designs, Ann. Statist., 24, 2549-2559, (1996) · Zbl 0867.62068
[15] Wu, C. F.J., Construction of \(2^m 4^n\) designs via a grouping scheme, Ann. Statist., 17, 1880-1885, (1989) · Zbl 0695.62198
[16] Wu, C. F.J.; Chen, Y., A graph-aided method for planning two-level experiments when certain interactions are important, Technometrics, 34, 162-175, (1992)
[17] Wu, C. F.J.; Hamada, M., Experiments: Planning, Analysis, and Optimization, (2009), Wiley: Wiley New York · Zbl 1229.62100
[18] Wu, H. Q.; Wu, C. F.J., Clear two-factor interactions and minimum aberation, Ann. Statist., 30, 1496-1511, (2002) · Zbl 1015.62083
[19] Wu, C. F.J.; Zhang, R. C., Minimum aberration designs with two-level and four-level factors, Biometrika, 80, 203-209, (1993) · Zbl 0769.62058
[20] Yang, J. F.; Li, P. F.; Liu, M. Q.; Zhang, R. C., \(2^{(n_1 + n_2) -(k_1 + k_2)}\) fractional factorial split-plot designs containing clear effects, J. Statist. Plann. Inference, 136, 4450-4458, (2006) · Zbl 1099.62084
[21] Zhao, S. L.; Chen, X. F., Mixed two- and four-level fractional factorial split-plot designs with clear effects, J. Statist. Plann. Inference, 142, 1789-1793, (2012) · Zbl 1238.62089
[22] Zhao, S. L.; Chen, X. F., Mixed-level fractional factorial split-plot designs containing clear effects, Metrika, 75, 953-962, (2012) · Zbl 1410.62154
[23] Zhao, S. L.; Zhang, R. C., \(2^m 4^n\) designs with resolution III and IV containing clear two-factor interaction components, Statist. Papers, 49, 441-454, (2008) · Zbl 1148.62063
[24] Zhao, S. L.; Zhang, R. C.; Liu, M. Q., Some results on \(4^m 2^n\) designs with clear two-factor interaction components, Sci. China A, 51, 1297-1314, (2008) · Zbl 1143.62043
[25] Zhao, Q. Q.; Zhao, S. L., Mixed-level designs with resolution III and IV containing clear two-factor interaction components, Metrika, 78, 953-965, (2015) · Zbl 1329.62355
[26] Zi, X. M.; Zhang, R. C.; Liu, M. Q., Bounds on the maximum numbers of clear two-factor interactions for \(2^{(n_1 + n_2) -(k_1 + k_2)}\) fractional factorial split-plot designs, Sci. China A, 49, 1816-1829, (2006) · Zbl 1106.62089
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.