×

zbMATH — the first resource for mathematics

A train track directed random walk on \(\mathrm{Out}(F_r)\). (English) Zbl 1351.20025

MSC:
20F65 Geometric group theory
20E05 Free nonabelian groups
20E36 Automorphisms of infinite groups
20F28 Automorphism groups of groups
20P05 Probabilistic methods in group theory
60G50 Sums of independent random variables; random walks
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Bestvina M., J. Differential Geom. 35 pp 85– (1992)
[2] DOI: 10.1007/BF01884300 · Zbl 0837.20047 · doi:10.1007/BF01884300
[3] DOI: 10.1016/j.aim.2014.02.001 · Zbl 1348.20028 · doi:10.1016/j.aim.2014.02.001
[4] DOI: 10.1007/PL00001618 · Zbl 0884.57002 · doi:10.1007/PL00001618
[5] DOI: 10.2307/121043 · Zbl 0984.20025 · doi:10.2307/121043
[6] DOI: 10.4007/annals.2005.161.1 · Zbl 1139.20026 · doi:10.4007/annals.2005.161.1
[7] DOI: 10.2307/2946562 · Zbl 0757.57004 · doi:10.2307/2946562
[8] DOI: 10.1017/etds.2013.43 · Zbl 1351.37214 · doi:10.1017/etds.2013.43
[9] DOI: 10.2140/pjm.2012.256.291 · Zbl 1259.20031 · doi:10.2140/pjm.2012.256.291
[10] DOI: 10.4171/GGD/218 · Zbl 1336.20033 · doi:10.4171/GGD/218
[11] DOI: 10.1016/0040-9383(94)00038-M · Zbl 0844.20018 · doi:10.1016/0040-9383(94)00038-M
[12] Farb B., A Primer on Mapping Class Groups (pms-49) 49 (2011) · Zbl 1245.57002
[13] DOI: 10.1215/S0012-7094-98-09314-0 · Zbl 0946.20010 · doi:10.1215/S0012-7094-98-09314-0
[14] Gaboriau D., Ann. Sci. Ecole Norm. Sup. 28 pp 549– (1995) · Zbl 0835.20038 · doi:10.24033/asens.1725
[15] Guirardel V., Ann. Sci. École Norm. Sup. (4) 33 pp 433– (2000) · Zbl 1045.20034 · doi:10.1016/S0012-9593(00)00117-8
[16] Guirardel V., Ann. Sci. École Norm. Sup. (4) 38 pp 847– (2005)
[17] DOI: 10.1007/BFb0073641 · doi:10.1007/BFb0073641
[18] DOI: 10.1090/S0002-9947-07-04065-2 · Zbl 1120.20042 · doi:10.1090/S0002-9947-07-04065-2
[19] Handel M., Mem. Amer. Math. Soc. 213 (2011)
[20] DOI: 10.2140/gtm.2008.14.321 · Zbl 1140.20027 · doi:10.2140/gtm.2008.14.321
[21] DOI: 10.1112/blms/bdt093 · Zbl 1319.20030 · doi:10.1112/blms/bdt093
[22] DOI: 10.2140/gt.2009.13.1805 · Zbl 1194.20046 · doi:10.2140/gt.2009.13.1805
[23] DOI: 10.1006/jabr.2001.9033 · Zbl 1001.20015 · doi:10.1006/jabr.2001.9033
[24] DOI: 10.1007/s00039-009-0016-4 · Zbl 1196.20038 · doi:10.1007/s00039-009-0016-4
[25] DOI: 10.1017/S1474748003000033 · Zbl 1034.20038 · doi:10.1017/S1474748003000033
[26] DOI: 10.1353/ajm.1997.0003 · Zbl 0878.20019 · doi:10.1353/ajm.1997.0003
[27] DOI: 10.1215/00127094-2010-216 · Zbl 1213.37072 · doi:10.1215/00127094-2010-216
[28] DOI: 10.1007/s40062-013-0060-5 · Zbl 1367.20049 · doi:10.1007/s40062-013-0060-5
[29] DOI: 10.1215/00127094-2008-009 · Zbl 1207.20068 · doi:10.1215/00127094-2008-009
[30] Rivin I., Int. Math. Res. Not. 2010 pp 3649–
[31] Seneta E., Springer Series in Statistics, in: Non-negative Matrices and Markov Chains (2006) · Zbl 1099.60004
[32] DOI: 10.1007/BF02095993 · Zbl 0521.20013 · doi:10.1007/BF02095993
[33] DOI: 10.1090/S1088-4173-2014-00270-7 · Zbl 1360.37089 · doi:10.1090/S1088-4173-2014-00270-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.